
SemanticPaint:
Interactive 3D Labeling and Learning at your Fingertips
Julien Valentin1∗, Vibhav Vineet1∗, Ming-Ming Cheng1,4∗, David Kim2, Jamie Shotton2,
Pushmeet Kohli2, Matthias Nießner3, Antonio Criminisi2, Shahram Izadi2∗, Philip Torr1∗
1University of Oxford 2Microsoft Research Cambridge 3Stanford University 4Nankai University

We present a new interactive and online approach to 3D scene understand-
ing. Our system, SemanticPaint, allows users to simultaneously scan their
environment, whilst interactively segmenting the scene simply by reaching
out and touching any desired object or surface. Our system continuously
learns from these segmentations, and labels new unseen parts of the envi-
ronment. Unlike offline systems, where capture, labeling and batch learning
often takes hours or even days to perform, our approach is fully online.
This provides users with continuous live feedback of the recognition during
capture, allowing them to immediately correct errors in the segmentation
and/or learning – a feature that has so far been unavailable to batch and
offline methods. This leads to models that are tailored or personalized specif-
ically to the user’s environments and object classes of interest, opening up
the potential for new applications in augmented reality, interior design, and
human/robot navigation. It also provides the ability to capture substantial
labeled 3D datasets for training large-scale visual recognition systems.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Digitizing and Scanning; I.4.8 [Image
Processing and Computer Vision]: Scene Analysis—Range data

General Terms: Interactive, 3D scene understanding, online, depth camera

Additional Key Words and Phrases: segmentation, 3D features, learning

1. INTRODUCTION

Imagine walking into a room with a wearable consumer depth cam-
era. As you move within the space, the dense 3D geometry of the
room is automatically scanned in real-time. As you begin to phys-
ically interact with the room, touching surfaces and objects, the
3D model begins to be automatically segmented into semantically
meaningful regions, each belonging to a specific category such as
wall, door, table, book, cup and so forth. As you continue interact-
ing with the world, a learned model of each category is updated
and refined with new examples, allowing the model to handle more

∗Joint first authors
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies show
this notice on the first page or initial screen of a display along with the full
citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481,
or permissions@acm.org.
c© 2015 ACM 0730-0301/2015/15-ART106 $10.00

DOI 10.1145/1559755.1559763
http://doi.acm.org/10.1145/1559755.1559763

variation in shape and appearance. When you start observing new
instances of these learned object classes, perhaps in another part of
the room, the 3D model will automatically and densely be labeled
and segmented, almost as quickly as the geometry is acquired. If the
inferred labels are imperfect, you can quickly and interactively both
correct the labels and improve the learned model. At the end you
rapidly generate accurate, labeled 3D models of large environments.

Although simple and intuitive from the user interaction perspec-
tive, this type of scene understanding scenario has remained chal-
lenging since the field of computer vision was first established over
50 years ago [Roberts 1963]. Approaches typically first perform an
offline acquisition phase where images, RGB-D data, or 3D models
are acquired. These are then labeled often using crowd-sourcing
techniques e.g. [Russell et al. 2008]. The labeled data is then used
for offline batch training of generative or discriminative models
[Koppula et al. 2011; Silberman et al. 2012]. This is followed by a
test phase where the learned models are used for labeling semantic
parts. It is not unusual for existing systems to take hours or even
days to train [Shotton et al. 2006], and even the test phase can often
take multiple seconds per image [Shotton et al. 2006; Kohli et al.
2009] due to the use of expensive feature extraction and recognition
algorithms. Furthermore, it is hard to know in advance how much
labeled training data is required and how varied it should be. Even
then, the learned model is not guaranteed to generalize well, and if
so the whole process must begin again with further acquisition.

This paper aims to address these issues associated with offline
techniques, and bring us closer to realizing the challenging and
yet compelling scenario above: rather than offline data collection,
labeling, and training, we describe a system that can perform all
parts of the pipeline, from low-level 3D reconstruction, through
to semantic segmentation, training, and testing, interactively (i.e.
with the user in the loop) and in an online manner. We provide a
simple and unified user experience, which even novice users can
perform. The user receives continuous and immediate feedback of
the semantic pipeline during capture. This allows online correction
of errors in the segmentation and/or learning. This also leads to 3D
semantic models that are tailored or personalized specifically to
the user’s environments and object classes of interest. Our online
system allows anyone to interactively acquire semantically labeled
3D models of arbitrary environments in minutes (see Fig. 1 and
supplementary video).

Under the hood, a dense 3D model of the environment is captured
in real-time by fusing noisy depth maps into an implicit volumetric
surface representation. Our system then allows the user to walk
up to any object of interest, simply touch and ‘paint’ the physical
surface, and vocally call out a new or existing object class name. Our
method first cleanly segments any touched object from its supporting
or surrounding surfaces, using a new volumetric inference technique
based on an efficient mean-field approximation. This is lightweight
to perform and places the user ‘in the loop’ during the process,

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

2 • Valentin et al.

“Banana”

“Chair”

Fig. 1. Our system allows users to quickly and interactively label the world around them. The environment is scanned using a consumer RGB-D camera, and in
real-time a volumetric fusion algorithm reconstructs the scene in 3D with additional color data (left). At any point the user can reach out and touch objects in the
physical world, and provide object class labels through voice commands (middle). Then, an inference engine propagates these user-provided labels through the
reconstructed scene, in real-time. In the meantime, in the background, a new, streaming random forest learns to assign object class labels to voxels in unlabeled
regions of the world. Finally, another round of volumetric label propagation produces visually smooth labels over the entire scene (right).

allowing her to focus on objects that are of personal interest, rather
than those predefined by application developers or dataset creators.

In the background, a new form of streaming random forest is
trained and updated as new labeled object examples become avail-
able. The decision forest can quickly infer the likelihood that any
newly-observed voxel belongs to each object class. The final stage
of our pipeline estimates a spatially consistent dense labeling of the
voxel reconstruction by again performing mean-field inference over
the voxel space but now using the results from the decision forest.
This creates a system that can be used to rapidly segment 3D scenes
and learn from these labels in an online manner. Furthermore, if
after initial labeling, the learned model does not generalize well to
new object instances or 3D viewpoints, the user can quickly relabel
parts of the scene as necessary and see the improved results almost
instantaneously as the learned models are updated online.

All pipeline components (including the features used during learn-
ing and inference) work directly on the volumetric data used for re-
construction, as opposed to requiring lossy and potentially expensive
conversion of the data to depth image, point-cloud, or mesh-based
representations. Additionally, the entire reconstruction, segmenta-
tion, classification and filtering pipeline runs in real-time, with the
learning occurring in an online manner in the background.

We foresee numerous potential practical applications of our sys-
tem. For example, for quickly gathering large numbers of labeled
3D environments for training large-scale visual recognition systems
such as [Krizhevsky et al. 2012; Silberman and Fergus 2011]; gener-
ating personalized environment maps with semantic segmentations
to be used for the navigation of robots or partially sighted people;
recognizing and segmenting objects for augmented reality games
which ‘understand’ the player’s environment; and planning the reno-
vation of a building, automating inventory, and designing interiors
[Merrell et al. 2011].

Contributions. Our work builds on the existing body of research
on 3D reconstruction, semantic modeling, and scene understanding
in the following ways:

First, and foremost, we present a general-purpose 3D semantic
modeling system, which fuses live 3D scene geometry as input,
allows the user to segment and label surfaces interactively, continu-
ously learns models of object classes, and performs classification
and filtering, all in an online manner. This, to our knowledge, is the
first time that all parts of a 3D semantic pipeline have been shown

to work online and mostly in real-time, alongside acquisition. This
is combined with a intuitive way for users to label physical objects
using a multi-modal interface, which uses the metaphor of painting
semantics onto the real-world, combined with speech commands.

To realize this system, we have made specific technical contri-
butions along the way. While secondary, these extend the field of
3D scene understanding further. Specifically we present: (i) an on-
line learning algorithm called streaming random forests that uses
reservoir sampling to maintain fixed-length unbiased samples of
streaming data; (ii) robust 3D rotation-invariant appearance and ge-
ometric features that are computed directly on the volumetric data;
and (iii) an efficient mean-field algorithm for performing inference
in a dynamically-changing volumetric random field model.

Our results demonstrate high-quality object segmentations on
varied sequences (see Fig. 1, supplementary video, and Sec. 7). The
segmentations are achieved with intuitive user interaction: seconds
suffice to label individual objects or correct labels, just by touching
surfaces and issuing voice commands, and a reasonably sized room
can be scanned in and fully labeled in just a few minutes. Our
entire semantic processing pipeline runs at interactive rates on a
commodity desktop PC with a single GPU.

2. RELATED WORK

Acquiring 3D models of the real-world is a long standing problem
in computer vision and graphics, dating back over five decades
[Roberts 1963]. Since then, offline 3D reconstruction techniques
have digitized cultural heritage with remarkable quality [Levoy
et al. 2000], and given rise to world-scale, Internet-accessible, 3D
maps reconstructed using street-side [Pollefeys et al. 2008], aerial
[Hirschmuller 2008] and online photo collections [Snavely et al.
2006; Shan et al. 2013]. More recently, real-time or online 3D
scanning emerged, with the rise of consumer depth cameras and
GPU-based algorithms. Methods for real-time dense reconstructions,
even over large physical scales, with only a single commodity depth
or RGB camera have been demonstrated [Rusinkiewicz et al. 2002;
Newcombe et al. 2011; Izadi et al. 2011; Newcombe et al. 2011;
Chen et al. 2013; Nießner et al. 2013; Pradeep et al. 2013]. This has
given rise to compelling new applications such as live 3D scanning,
physically-plausible augmented reality, autonomous robot or vehicle
guidance, and 3D fabrication.

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

SemanticPaint: Interactive 3D Labeling and Learning at your Fingertips • 3

Beyond low-level geometry acquisition and reconstruction, re-
searchers have explored how to interpret the content of captured 3D
models i.e. the objects or types of surfaces that are present. There
is considerable interest and work on scene understanding and se-
mantic modeling dating back as far as the reconstruction algorithm
themselves, when primitive ‘block world’ representations were first
devised [Roberts 1963]. Much work has happened in this area since.
2D techniques have been proposed that automatically partition an
input RGB image into semantically meaningful regions, each la-
beled with a specific object class such as ground, sky, building, and
so forth (e.g. [Shotton et al. 2006]). Others have focused on geo-
metric reasoning to extract 3D structure from single RGB images
(e.g. [Gupta et al. 2010]) or exlicit object detection (e.g. [Yao et al.
2012]). In the remainder we focus on methods that additionally use
depth data rather than purely 2D input, but refer the reader to [Xiao
2014] for a review of 2D approaches.

With the advent of affordable depth sensors, there has been grow-
ing interest in working with RGB-D input [Silberman and Fergus
2011; Silberman et al. 2012; Couprie et al. 2013; Ren et al. 2012;
Kähler and Reid 2013], as well as 3D point clouds [Brostow et al.
2008; Koppula et al. 2011; Anand et al. 2013; Stückler et al. 2013],
meshes [Valentin et al. 2013] or voxel representations [Kim et al.
2013; Karpathy et al. 2013; Salas-Moreno et al. 2013; Häne et al.
2013]. Methods have been proposed to break down meshes into
semantic parts [Chen et al. 2009], perform dense segmentation of
reconstructed scenes [Lin et al. 2013; Sengupta et al. 2013; Ladickỳ
et al. 2012; Valentin et al. 2013], even in an online manner [Herbst
et al. 2014], localize objects in small scenes [Abdelrahman et al.
2013; Bonde et al. 2013; Karpathy et al. 2013; Lin et al. 2013], or
replace objects with synthetic models [Salas-Moreno et al. 2013;
Kim et al. 2012; Shao et al. 2012; Nan et al. 2012; Wang et al. 2014].
There has also been a wide body of research on capturing large and
compelling datasets which have moved from traditional 2D object
images to RGB-D and full 3D scenes [Xiao et al. 2010; Xiao et al.
2013; Geiger et al. 2012].

In the computer graphics literature there has been significant work
on automatically segmenting 3D meshes into semantic parts [Chen
et al. 2009; Kalogerakis et al. 2010; Shapira et al. 2010; Kim et al.
2013], including incremental depth camera-based methods [Shen
et al. 2012]. Most of these methods consider only connected noise-
free meshes, and geometric properties, ignoring the appearance.
Furthermore, these techniques operate only on single objects, and
do not operate in real-time. More recently, there has been relevant
work on matching scan data to synthetic 3D model databases [Kim
et al. 2012; Nan et al. 2012; Shao et al. 2012], with the aim to replace
noisy point clouds with detailed CAD models. These approaches
are compelling in that they increase final reconstruction fidelity
and exploit repetition of objects to minimize the memory footprint.
These systems first perform automatic or interactive segmentation of
the scene into constituent parts which are then individually matched
to the model database. However, these techniques require a model
database to be built and learned offline, and the test-time matching
techniques can take seconds to minutes to perform.

[Salas-Moreno et al. 2013] takes this concept a step further, by
building an online SLAM system that can recognize objects and
update the model live. However, the model database is still captured
and generated offline. Only a single object class (chair) is recognized
and it is unclear how the system can support larger surfaces such as
floors, walls and ceilings. However, this system demonstrates the
power of semantic recognition alongside the reconstruction process,
improving relocalization, memory efficiency, and loop closure. This
type of semantic information has also been explored in the context

of bundle adjustment [Fioraio and Di Stefano 2013], and extended to
sparse map representations [Ramos et al. 2008; Castle et al. 2007].

For outdoor scene labeling, much of the work has concentrated
on classification of images [Brostow et al. 2008; Posner et al. 2009;
Ladickỳ et al. 2012]. [Sengupta et al. 2013] generates a dense se-
mantic 3D reconstruction but labeling is performed on the images
and projected to the final model, which limits the use of full 3D
geometry in their inference. [Häne et al. 2013] perform joint vol-
umetric dense reconstruction and semantic segmentation, using a
computationally complex global optimization. [Lin et al. 2013] de-
composes outdoor scenes into semantic parts and employs 3D model
matching techniques similar to [Kim et al. 2012; Nan et al. 2012;
Shao et al. 2012] to create reconstructions from LiDAR data. None
of these systems operate in a real-time or in an online manner.

[Silberman and Fergus 2011; Silberman et al. 2012; Couprie et al.
2013; Ren et al. 2012; Kähler and Reid 2013] attempt to label in-
door scene images captured using RGB-D sensors. Classification or
recognition is performed in image-space, along with 3D priors to aid
segmentation. Again these systems fail to exploit full 3D geometry
and are the counterpart of image-based segmentation but for RGB-D
frames. [Valentin et al. 2013] exploits 3D meshes and geometric and
appearance features for improved inference in outdoor and indoor
scenes. [Kim et al. 2013] use a voxel-based conditional random field
(CRF) for segmentation and occupancy-grid based reconstruction.
However, these techniques are not efficient enough to be used in an
online system, and operate only on coarse reconstructions.

Our approach differs from these systems in several compelling
ways. Firstly our system runs entirely online and interactively, in-
cluding data capture, feature computation, labeling, segmentation,
learning and filtering. Second, our pipeline leads to robust and dense
object labels directly on the acquired 3D model. Finally, in our
system, the user is ‘in the loop’ during the labeling and training
process, allowing the system to evolve to new object classes in an
online fashion, and allowing the user to label a minimal amount and
correct any mistakes interactively. This allows the user to rapidly
build up models personalized to their spaces and goals.

3. SCENARIO OF USE

Our system offers a new way of capturing, labeling and learning
semantic models, all in an online manner. In this section we walk
through the main interactive capabilities of our system. Fig. 2 pro-
vides one example scenario of use. The user walks into a room
with a number of chairs, tables, and smaller objects placed on the
tabletops. The user is holding a consumer depth camera, such as a
Kinect. Immediately they are able to capture the geometry of room,
and generate a dense, globally consistent, 3D model, which can be
viewed on a tablet screen or using heads-up displays.

The user can then reach out and touch surfaces in proximity, and
issue a voice command to label these objects. Initially, the user
points the camera downwards, towards the ground, and puts out
their foot, and performs a ‘stroke’ gesture across the floor. She then
issues a voice command – ‘floor’. This user annotation then triggers
our system to automatically propagate this label across the floor,
as shown in Fig. 2 (top row). This leads to a smooth segmentation
across the floor (as shown later we use both geometry and appear-
ance cues to perform this segmentation). Now the user defined class
‘floor’ will be associated with these segmented voxels. The user
next walks up to a chair, and again using a simple touch and speech
command, annotates it appropriately. Again our algorithm smoothly
segments this object, as shown in Fig. 2 (middle row, left). The user
can also perform an ‘enclose’ gesture around smaller objects, where
directly touching the surface would be more challenging, as in the

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

4 • Valentin et al.

Fig. 2. Interacting with the system to capture geometry, label classes, and use these for online learning. See text for details.

case of the banana in Fig. 2 (middle row, right). At the end of the
user annotation stage, the user has labeled the floor, one chair, the
table, banana, and mug, and these objects are cleanly segmented in
the 3D model, as shown in Fig. 2 (middle row, right). Interacting
in this way firmly places the user ‘in the loop’ and is analogous to
successful 2D segmentation tools such as GrabCut [Rother et al.
2004b], but where the interaction and segmentations are performed
directly on the physical 3D world.

As new classes are labeled these are added as examples to a new
online learning algorithm. When the user says the voice command
‘test mode’, the system enters a mode where the learning is acti-
vated. At this stage all unlabeled parts of the scene are automatically
labeled based on the output of the learning. As shown in Fig. 2
(bottom row, left), the two chairs either side of the annotated chair
are now automatically labeled correctly. As the user explores a new
part of the scene, the floor is also correctly labeled. This includes
another table with the same object classes, which is again correctly
and automatically labeled. Notice in Fig. 2 (bottom row, middle),
the chairs are incorrectly labeled. This is due to the fact that these
chairs are actually yellow in color (see Fig. 1), and we use both
appearance and geometry cues for learning (and have only trained
on blue chairs so far). However, given that our system is fully online,
we can correct these labels. Here we first say ‘annotation mode’ to
enter user labeling mode, and again by simply touching the yellow
chair, and saying the voice command ‘chair’, we can add this addi-
tional example to the training set. We then say ‘training mode’ to
add the additional example, followed by the voice command ‘test
mode’, which will now activate the learning, but based on this new
training example. Note, the ability of our system to correct mistakes
is crucial: no learning system is perfect, and our approach allows
the user to see immediately where more training data (and thus user
interaction) is required and to provide it in a natural way. Finally, we
see how all yellow chairs are now also labeled correctly, as shown
in Fig. 2 (bottom right) and Fig. 1.

4. SYSTEM PIPELINE

The overall architecture of our system is illustrated in Figure 3, and
contains the following main components:

3D model acquisition engine. The first component of our system
is 3D model acquisition. This component takes the color and depth
image frame stream coming from the RGB-D sensor and fuses it
on the GPU to generate a 3D model. We adopt the truncated signed
distance function (TSDF) of [Curless and Levoy 1996] to fuse depth
images into a 3D volume as in KinectFusion [Newcombe et al.
2011; Izadi et al. 2011]. To handle large-scale scenes we employ
the hashed volumetric representation from [Nießner et al. 2013] and
use a voxel resolution of 6mm3.

User interaction. Our system allows for two modes of user in-
teraction: touch-based interaction using hands and feet, and voice
based commands. As in [Izadi et al. 2011], we detect touch by look-
ing for large components in the observed depth image that differ
from the raycasted model, which are close to the implicit surface.
This allows the user to draw strokes on real-world objects and have
those strokes appear as labels on screen. As in [Cheng et al. 2014],
we use a standard voice recognition system to input labels such as
‘table’, ‘chair’, etc., and to recognize commands such as ‘annotation
mode’, ‘training mode’ or ‘test mode’.

Mean-field inference on CRF energy. At the heart of our se-
mantic labeling approach is an efficient mean-field inference engine
[Krähenbühl and Koltun 2011] applied to a dynamic conditional
random field (CRF) model. The inference algorithm computes a per-
voxel approximate posterior distribution over the set of object labels
that the user provided. These distributions can be rendered as label
maps and provided to the user as feedback. Both the user specified
interaction hints and the predictions coming from the classification
forest (see below) are integrated into the CRF through unary likeli-
hood functions that operate on individual voxels. Pairwise terms in
the CRF model ensure a smooth segmentation and allow the user la-
bels to propagate outwards to object boundaries in the scene. In our
application, the unary likelihoods and thus the CRF model changes
dynamically from one frame to the next as (i) more data is acquired
and the 3D model is updated, and (ii) the user continues to interact
and specifies further labels. We show how the mean-field updates
can be applied to such dynamic environments, can be implemented
on the GPU, and the computational cost can be amortized over multi-
ple video frames to enable an efficient implementation. This ensures

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

SemanticPaint: Interactive 3D Labeling and Learning at your Fingertips • 5

Output 3D model

Mean-field

Labeled SDF

Gestures + speech +
corrections

RGB Depth
Final Segment.

Online learningForest prediction

SDF Fusion

Fig. 3. Overview of 3D semantic modeling pipeline. See text for details.

that super real-time speeds can be maintained (one update of the
messages requires ∼6 milliseconds), and as a by-product, results in
a visually pleasing ‘label propagation’ effect.

Streaming random forest classifiers. Our system operates in
two modes: training and test. The user can switch between these
using voice commands. During the training mode, the labels that
result from running the mean-field inference given the user-specified
labels are fed into a streaming random forest algorithm that learns
to predict likelihoods for assigning object labels to unlabeled parts
of the 3D scene. The streaming decision tree algorithm continuously
adapts in the background and will process any updates that have been
made to the reconstruction volume, including any newly provided
user labels. The forest employs a new type of 3D rotation invariant
appearance feature that can be efficiently computed directly from
the TSDF volume. In test mode, the forest is evaluated in parallel on
the GPU for every visible voxel, and the results are used to update
the unary likelihoods in the CRF. The mean-field inference then in
turn produces a smoothed output to display to the user.

In the next sections, we first detail the volumetric mean-field
inference and user interaction in Sec. 5, before describing the online
learning in Sec. 6.

5. PAINTING AND SEGMENTING THE WORLD

In this section we describe the volumetric segmentation algorithm
used to generate the smooth results that are presented to the user.
Our results depend both on labels provided interactively by the user,
and on inferences made by the learned classifier (described later in
Sec. 6).

All parts of the pipeline directly work with the implicit surface
data stored in the volume. Each voxel contains the TSDF (stored as a
32-bit float), a color value (24-bits, in Lab color space), and a weight
(8-bits) for averaging distance values. Additionally, we also store
class labels associated with: user annotations (8-bits), predictions
from the online forest (8-bits), and the results of the mean-field
inference before and after classification (two 8-bit values). Finally,
the probability distributions from the mean-field inference are also
directly stored in the voxels (as a 32-bit float per class). To allow
for this additional data per voxel, we exploit the sparse nature of the
TSDF using the hashing-based approach of [Nießner et al. 2013].

We formulate the problem of assigning semantic labels to voxels
using a pairwise Conditional Random Field (CRF) [Lafferty et al.
2001]. While pairwise CRFs have been widely used for image label-
ing problems such as image segmentation, stereo and optical flow, a
key distinguishing feature of our formulation is its dynamic nature
that requires a special purpose inference routine. This allows us to
deal with a continuously changing underlying 3D model (as more
depth frames are fused), new user provided labels, and an on-the-fly
trained decision forest predictor based likelihood function.

5.1 Dynamic Conditional Random Field Model

Each voxel i in the 3D reconstruction volume (denoted by V) of the
scene is represented by a discrete random variable xi that represents
the semantic class (e.g. floor, wall, table, mug) that the voxel belongs
to. Note that the choice and number of labels will depend on the
interactive user input. The posterior distribution over the labeling
of voxels under the pairwise CRF factorizes into likelihood terms
ψi defined over individual voxels and prior terms ψij defined over
pairs of random variables. The posterior is formally written as

P (x|Dt) ∝
∏
i∈V

ψi(xi)
∏

(i,j)∈E

ψij(xi, xj) (1)

where x is the concatenation of the xi for all i ∈ V , D is the
volumetric data at time t, and set E with i ∈ V and j ∈ V de-
fines the neighborhood system of the random field1. To encourage
smoother results, we employ a large neighborhood system which
densely includes all voxels within a 6cm radius. This can be han-
dled efficiently by our GPU-based volumetric mean-field inference
algorithm described below.

An equivalent but perhaps more convenient definition can be
reached by taking the negative log of the posterior. This gives the
energy of the labeling under the CRF as:

Et(x) =
∑
i∈V

φi(xi) +
∑

(i,j)∈E

φij(xi, xj) +K (2)

where φi encode the cost of assigning label xi at voxel i, φij are
pairwise potentials that encourage neighboring (i.e. (i, j) ∈ E)
voxels to take the same label, K is a constant, and the conditioning
on the data Dt is now implicit.

Note that the unary and pairwise terms in (2) will be constantly
changing in our dynamic CRF. This is because (i) the volumetric
reconstruction is constantly being updated with new observations,
and (ii) the user is interacting with the environment and providing
new labels. We next provide more details of the particular forms of
these dynamic potentials.

Transition-sensitive smoothness costs. For our application, we
employ a standard Potts model for the pairwise potentials, defined
as:

φij(l, l
′) =

{
λij if l 6= l′

0 otherwise.
(3)

In the 2D segmentation domain, the cost λij of assigning different
labels to neighboring pixels is generally chosen such that it preserves
image edges [Boykov et al. 2001; Rother et al. 2004a]. Inspired
from these edge-preserving smoothness costs, we make the label
discontinuity cost λij dependent on a number of appearance and
depth features:

λij = θpe
−‖pi−pj‖2 + θae

−‖ai−aj‖2 + θne
−‖ni−nj‖2 (4)

where pi, ai and ni are respectively the 3D world coordinate po-
sition, RGB appearance, and surface normal vector of the recon-
structed surface at voxel i, and θp θa and θn are hand-tuned param-
eters. Note that the surface normals are calculated from the gradient
of the TSDF at the zero-crossing. Observe that as the 3D model
is updated from one frame to the next, the appearance and surface
normals associated with the voxels change. The energy landscape
thus continuously changes over time.

1We have not listed the data Dt as an argument in the potential functions
ψi and ψij for the sake of a simpler and uncluttered exposition.

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

6 • Valentin et al.

Initialization of the Unary Costs The unary potentials φi of the
CRF model defined above are initialized for all i ∈ V by specifying a
fixed cost that initially encourages all voxels to take the background
label:

φi(l)←

{
0 if l is the background label
θbg otherwise.

(5)

Note that each unary can be thought of as a table of values (one
entry for each l ∈ L). During operation of our system, the entries in
these tables are gradually replaced based on user interactions and
predictions from the streaming random forest based classifier that
encodes the cost for a voxel being assigned a particular label, as
described next.

User ‘Paint’ Interactions. As illustrated in Fig. 2, our system
allows two types of user interaction gestures for labeling the world.
The first user interaction supported is a ‘paint’ (or ‘stroke’) gesture.
The user reaches out, and touches the surface of the object they
want to label. Note that the user need not precisely label every voxel
belonging to the object, and can instead roughly mark a small set
of voxels. We denote the set of voxels that the user has stroked
as HS. The user also specifies a semantic label lS through speech
recognition, and can specify an existing label or a new one, in which
case the label set L is enlarged. These labelings are used to update
the unary potentials to enforce that these voxels take the specified
semantic label. The update is applied to all voxels i ∈ HS as

φi(l)←

{
0 if l = lS
∞ otherwise.

(6)

Multiple such labelings with different regionsHS and labels lS can
be provided in sequence. In the case of incorrect propagation due
either to wrongly placed user strokes or to problems with the mean-
field inference, the user can specify another stroke labeling. This
will overwrite any existing labeling and thus update the unary and
allow the new label to propagate.

User ‘Enclose’ Interactions. The second form of user interac-
tion supported is the ‘enclose’ gesture, where the user reaches out
and draws a rough enclosing circle around the object they want to
describe. This interaction mode is most useful for small objects such
as bananas and pens. Again, voice is used to provide the semantic la-
bel l. To obtain an accurate labeling, we follow an approach similar
to [Rother et al. 2004a]. First, the user annotation is projected into
the current frame’s input image. On the CPU, a Gaussian mixture
model (GMM) is fit to the colors in the foreground and background
regions. Foreground is taken as the interior of the convex hull of the
user annotations, and background as the rest of the image. Then we
transfer the GMMs to the GPU where a shader computes in parallel
the probability

PE(fg|ai) =
P (ai|fg)

P (ai|fg) + P (ai|bg)
(7)

based on the voxel’s foreground (fg) and background (bg) color
likelihoods (and assuming uniform priors). This is computed for all
voxels i in a bounding volume surrounding the user annotations.

Inference is performed within this bounding volume to estimate
which of the two labels (foreground-background) is most likely to
be assigned to each voxel. This is used to update the unary cost in
the energy defined over the full 3D model as

φi(l)←

{
logPE(fg|ai) if l = fg

log(1− PE(fg|ai)) if l = bg
(8)

Learned Class Predictions. There is one final source of updates
to the unary costs. We describe below in Section 6 how a decision
forest is able to learn and make predictions about object classes in
newly observed regions of the world that are not hand-labeled. The
output of the forest is a prediction of the distribution PF(xi = l |D)
over semantic labels l ∈ L at voxel i. For voxels i that have not
been hand labeled using either of the interactions described above or
label-propagation by mean-field, this distribution is used to update
the unary likelihood costs as:

φi(l)← − logPF(xi = l |D) . (9)

5.2 Efficient Mean-Field Inference

Given the unary and pairwise terms defined above, the labeling
can be propagated through the volume by inferring the optimal
labeling x given the pairwise energy functions. The Maximum a
Posteriori (MAP) labeling for pairwise energy functions such as the
one defined in equation (2) could be computed using standard graph
cut based move making algorithms like α-expansion and αβ-swap.
However, these algorithms are intrinsically sequential, and it is hard
to tailor them to high throughput architectures like GPUs without
significant engineering overheads [Vineet and Narayanan 2008].

Instead, we propose an online volumetric mean-field inference
framework that efficiently infers the approximate maximum pos-
terior marginal (MPM) solution of our energy. While based on
[Krähenbühl and Koltun 2011], we make two key technical contribu-
tions. Firstly we show how such a volumetric energy minimization
can be implemented efficiently on the inherently parallel architecture
of the GPU. Secondly, we exploit the fact that the energy landscape
usually changes only gradually from one frame to the next. This
allow us to amortize the optimization cost over multiple frames.
This not only enables the system to run at a high frame rate, but
also results in a pleasing result to the user as user labels appear to
gradually propagate out from the initial strokes until they accurately
delineate the objects boundaries based on the energy function (2) of
the model.

The mean-field optimization [Krähenbühl and Koltun 2011] pro-
ceeds as follows. We introduce a probability distribution Q(x)
that approximates the original distribution P (x) (1) under the KL-
divergence D(Q||P). Further, we choose a factorized distribution
Q(x) such that the marginal of each random variable is independent,
i.e. Q(x) =

∏
iQi(xi). Taking the fixed point solution of the KL-

divergence [Koller and Friedman 2009], we obtain the following
mean-field update:

Qti(l) ←
1

Zi
e−Mi(l) (10)

Mi(l) = φi(l) +
∑
l′∈L

∑
j∈N (i)

Qt−1
j (l′)φij(l, l

′) (11)

Zi =
∑
l∈L

e−Mi(l) (12)

where l ∈ L is a label taken by random variable xi, Qti(l) denotes
the marginal probability at iteration t of variable xi taking label l,
Ni denotes the set of neighbors of i (i.e. j ∈ Ni ⇔ (i, j) ∈ E), and
Zi normalizes the distribution. After iterating the updates (10) to
iteration T , the output MPM estimates can be obtained as

x?i = argmax
l∈L

QTi (l) . (13)

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

SemanticPaint: Interactive 3D Labeling and Learning at your Fingertips • 7

Given unlimited computation, one might run multiple update
iterations until convergence.2 However, in our online system, we
assume that the next frame’s updates to the volume (and thus to
the energy function) are not too radical, and so we can make the
assumption that the Qi distributions can be temporally propagated
from one frame to the next, rather than re-initialized (e.g. to uniform)
at each frame. Thus, running even a single iteration of mean-field
updates per frame effectively allows us to amortize an otherwise
expensive inference operation over multiple frames and maintain
real-time interactive speeds. Note that this effectively means that
the t variable above becomes both the frame number and the mean-
field iteration count. Furthermore, this approach results in a smooth
propagation of the inferred labels through the world from one frame
to the next, providing continuous feedback to the user.

Integration of Forest Predictions. As described above, the out-
put of the streaming random forest (Section 6) is used to update the
unary distributions, which will, over several frames, impact the final
segmentation that results from the mean-field inference. However,
to speed up convergence, we propose an additional step that exploits
our temporal propagation of the Q distributions. Rather than simply
propagating the Qt−1

i s from the previous frame, we instead provide
the next iteration of mean-field updates with a weighted combination
of Qt−1

i and the forest prediction PF(xi = l |D). We thus use

Q̄t−1
i (l) = γQt−1

i (l) + (1− γ)PF(xi = l |D) (14)

in place of the Qt−1
i in (11), where γ is a weighting parameter. In

practice, this step appears to result in considerably quicker updates
to the segmentation result given the forest predictions.

5.3 Implementation on the GPU.

To achieve real time performance, we run the mean-field inference
on the GPU. Each GPU thread independently computes the Q̄ti dis-
tribution in parallel for all voxels i based on the previous frame’s
estimates Q̄t−1

i and the forest probabilities PF(xi |D). We employ
three GPU shaders, which are executed in sequence. The first shader
calculates Q̄ according to (14). The second shader applies the mean-
field update (10) to the class probabilities stored at each voxel. This
entails looking up the unary and adding in the pairwise terms for all
neighbors of the voxel. While previous methods such as [Krähenbühl
and Koltun 2011] have considered fully connected CRFs, a reason-
able trade-off between accuracy and speed was achieved by using
a radius of 6cm to determine the neighborhood. The third shader
finally evaluates the MPM solution using (13) for the current time t.

Each thread is processed independently, and the computation
required is proportional to the neighborhood size times the num-
ber of classes. We do other optimizations to improve the speed of
mean-field inference on the GPU. These take the form of adaptive
scheduling of message updates. First, we do not apply the mean-field
update for voxels where the probability for a particular class is very
high as this is unlikely to change the final labeling. Second, we do
not perform the mean-field updates for voxels that lie away from the
surface (i.e. outside the truncation region of the TSDF). Finally, we
look at the neighbors only if they lie within the truncation region.
All these updates are important to enable inference in real time.

2If applied sequentially on a fixed energy function, the mean-field inference
comes with some convergence guarantees [Krähenbühl and Koltun 2011].
These do not apply to our algorithm as our algorithm is dynamically updated
in each frame, but this does not appear to be a problem in practice.

6. LEARNING TO LABEL THE NEW WORLD

The previous section detailed our efficient mean-field inference
that, given a set of unary and pairwise potentials, optimizes an en-
ergy function to produce spatially-smooth segmentations. We have
seen how the unary potentials in (2) are initially encouraged to be
background (5), and later are updated based on user interactions
(6, 8). This section details how we can learn and infer distribu-
tions PF(xi = l | D) that can be used as another form of unary
(9) to allow the CRF inference to automatically predict smooth
segmentations for unlabeled parts of the world. We apply a new
approach called streaming random forests to this task. These forests
are extremely fast both to train and test, and are capable of learning
online from a stream of labeled training voxels, and being updated
to correct for mistakes. Another contribution in this section is a
new set of features called voxel-oriented patches (VOPs). VOPs
can be efficiently computed from the raw TSDF volume and thus
avoid the expense of computing an explicit surface reconstruction.
They are also designed to be 3D rotation invariant allowing the
inference to generalize well across 3D object rotations in the world.
The following sections elaborate on our approach.

6.1 Decision Forests

Decision forests [Breiman 2001; Criminisi and Shotton 2013] have
proven successful for many applications. Typically trained offline
with large datasets, forests can learn to recognize the trained object
classes in new scenes. However, we cannot hope to employ such
offline learning approaches to our scenario due to the often long
training times (typically hours or even days), and our desire to
allow interactive updates and corrections to the classifier. We thus
turn to online forest learning [Domingos and Hulten 2000; Bifet
et al. 2009; Saffari et al. 2009]. While typically less accurate than
an offline-trained forest, online learning supports incremental (and
thus more interactive) updates given new or improved training data,
and can require less memory to train. Our new streaming decision
forests framework extends [Saffari et al. 2009] to use reservoir
sampling [Vitter 1985]. This allows us to maintaining a fixed-size
unbiased sample of all training data seen so far and avoid discarding
samples observed early on during training, resulting in faster and
more accurate classifiers. Our approach also requires considerably
less memory to train.

We first briefly review the standard offline (or ‘batch’) decision
forests (see e.g. [Criminisi and Shotton 2013] for more details),
before describing [Saffari et al. 2009], and finally our new streaming
decision forest algorithm.

Offline Forests. A forest comprises an ensemble of decision trees.
Each tree comprises binary split nodes and leaf nodes. At test time,
starting at the root, a left/right decision is made for voxel i according
to the evaluation of a binary split function f(i; θ) ∈ {L,R} with
learned parameters θ. As described in Sec. 6.3, parameters θ are used
to specify the particular features used at this node. According to the
result, the left or right child branch is followed, and the process is
repeated for each split node encountered, until a leaf node is reached.
At the leaf node a stored distribution PF(xi = l |D) is looked up
and used to update the voxel’s unary as described above.

Each tree is trained independently (offline) on subsets of the
training data. A set Sn of examples is provided to the root node
n = 0. Example set S consists of example pairs (i, l) where i
represents the training voxel index, and l is the associated class
label provided by user interaction. A set Θn of candidate binary
split function parameters θ is proposed randomly. Each candidate
split induces a partitioning of the set of examples into left and right

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

8 • Valentin et al.

subsets, SL
n(θ) and SR

n (θ). We can compute the information gain
objective as

G(S,SL,SR) = H(S)−
∑

d∈{L,R}

|Sd|
|S|

H(Sd) , (15)

where H(S) is the Shannon entropy of the distribution of labels l
in S. The (locally) optimal parameters can then be obtained as the
maximization

θn := argmax
θ∈Θn

G(Sn,SL
n(θ),SR

n (θ)) . (16)

Having found the best split parameters for node n, the tree growing
proceeds greedily for the left and right children until a predefined
stopping criterion is reached.

Online Random Forests. We next review the online forest algo-
rithm of [Saffari et al. 2009]. Given a current tree structure (initially
this will be a single root node), any incoming observations (i, l)
are passed down the tree until they reach a leaf node. At each leaf
there now exists a set Θn of candidate features, and for each feature
θ ∈ Θn, a set of left and right class label statistics are stored. These
histogram statistics are sufficient to compute the information gain
(15). Based on the output of f(i; θ), the new observation’s label l is
used to update the relevant (i.e. left or right) statistics for each θ. If
the updated leaf has now seen a large enough number of observa-
tions, and if at least one of the candidate features gives a good local
optimum of (16), then the leaf will be split, and two child nodes
with their statistics created. Hoeffding trees [Domingos and Hulten
2000] work in a similar way, but use a Hoeffding bound to decide
whether or not to split.

Streaming Random Forests. We propose a new method called
the ‘streaming random forest’. This can be seen as an extension of
[Saffari et al. 2009] with reservoir sampling. Reservoir sampling
[Vitter 1985] is a method of storing an unbiased sample of a fixed
maximum size from a stream of data. If the incoming data were
i.i.d., then we could of course simply store the first K samples
and we would be done. However, in practice our stream of training
data is very much not i.i.d., due in part to considerable correlation
between one frame and the next. Using a reservoir accumulated
over a potentially large temporal window of observations can thus
smooth out any imbalance in the distribution of incoming samples
and thus improve the quality of the classifier.

A reservoir maintains a list T of at most K examples, and a
count m of the total number of examples observed so far. Given
a new labeled observation (i, l), if m < K then the example is
simply appended to T . If instead m ≥ K and thus the reservoir is
full, then a uniform random integer k ∈ {1, . . . ,m} is chosen. If
k ≤ K then reservoir entry k is replaced by (i, l), otherwise the
observation is discarded. Finally, m is incremented, ready for the
next observation. Note that the probability of retaining a new sample
is K

m
, and so as m increases we are more likely to discard new

observations. However, in the limit of M samples, the probability of
any individual sample remaining in the reservoir is exactly uniform
at K

M
.

In [Saffari et al. 2009], at each current leaf node n, it was nec-
essary to store a set of class label statistics at the potential left and
right children that would result for every candidate split function.
We propose instead to store a single reservoir Rn = (Tn,mn) at
each potential parent (i.e. current leaf), which saves considerable
memory. By storing the count mn of observations separately, the
reservoir allows us to maintain a fixed maximum size set |T | ≤ K
of unbiased samples of the incoming observations, where K is a

𝐾 = 10 𝒯𝑛 = ,𝑚𝑛 = 20ℛ𝑛 =

𝜃𝑛

 𝒯𝑛
L 𝜃𝑛 = 𝒯𝑛

R 𝜃𝑛 =

𝑚𝑛
L = 𝒯𝑛

L
𝑚𝑛

𝐾
= 6 𝑚𝑛

R = 𝒯𝑛
R

𝑚𝑛

𝐾
= 14

𝑃 𝑙 | 𝒯𝑛

𝑃 𝑙 | 𝒯𝑛
L 𝑃 𝑙 | 𝒯𝑛

R

, 𝑚𝑛
L = 6ℛ𝑛

L = 𝒯𝑛
L = ,𝑚𝑛

R = 14ℛ𝑛
R = 𝒯𝑛

R =

Parent

Left child Right child

Fig. 4. A toy example of splitting a reservoir. Top: a reservoir Rn of ca-
pacity K = 10 that has observed mn = 20 samples. The dots represent
examples i and their colors the labels l. The empirical distribution P (l|Tn)
is computed from the labels (colors) in Tn. Bottom, above dashed line: For
any setting of the split parameters θn, the list Tn can be efficiently parti-
tioned into two halves, T̄ dn for d ∈ {L,R}. Given these, the corresponding
empirical distributions can be computed as before. Bottom, below dashed
line: Once the optimal θn has been chosen, we can resample to generate
child reservoirs: the child counts mdn are computed, and then mdn samples
from T̄ dn are drawn and added to the new reservoirRdn.

parameter of the method. We show below how the reservoir represen-
tation allows us to efficiently compute a good approximation of the
information gain (15) from only a small subset of the observations.

Optimizing the objective. When it is decided to split node n,
we must evaluate the objective (15) with the example sets Ss now
replaced by reservoirsRs. This requires a sweep through reservoir
Rn for each θ ∈ Θn. This can be performed efficiently, as follows.

The procedure is illustrated in Fig. 4. At the parent n we simply
define |Rn| = mn, and the distribution required to evaluate the
entropy H(Rn) can be calculated by normalizing the histogram of
class labels l in Tn. The remaining terms in the objective are |Rdn|
and H(Rdn) for each child d ∈ {L,R}. These can be computed
without explicitly computing the sub-reservoirs Rdn (cf. ‘Splitting
the reservoirs’ below, and compare above and below the dashed line
in Fig. 4). First, the examples (i, l) ∈ Tn are partitioned into left and
right subsets T̄ dn using split function f(i; θ). We can then efficiently
compute the ‘effective value’ for child count |Rdn| as

m̄d
n = |T̄ dn |max(1,

mn

K
) , (17)

and compute the entropies H(Rdn) from P (l|T̄ dn), the normalized
histogram of labels l in T̄ dn .

Splitting the reservoirs. The slight extra cost of the above sweep
compared to [Saffari et al. 2009] does come with a further benefit be-
yond reduced memory consumption. Having chosen the optimal θn
based on (15), rather than throw away the statistics stored at the node
(as done in [Saffari et al. 2009]), we can instead split the reservoir
Rn into sub-reservoirsRdn. For each of d ∈ {L,R}, we start with a
new, empty sub-reservoirRdn of capacity K. We first compute the
partitions T̄ dn as described above. To the nearest integer, the number
of examples inRdn should bemd

n = b|T̄ dn |max(1, mn
K

)+0.5c. We
thus draw md

n random samples (with replacement) from T̄ dn , and
add each into the new reservoirRdn in the standard fashion. Except
for rounding errors, this gives us the reservoirs containing unbiased
sets of examples for the left and right children.

Advantages of reservoirs. The ability not to throw the statistics
away gives us a considerable head start compared to [Saffari et al.
2009] in which each new node must start with an initially empty

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

SemanticPaint: Interactive 3D Labeling and Learning at your Fingertips • 9

set of statistics after being created. This in turn means that the new
nodes can themselves be split much sooner with fewer additional
observations. Furthermore the reduced memory consumption gives
the potential for the algorithm to scale to larger trees. In practice for
our scenario, this new approach gives a considerable improvement
in accuracy, which is later quantified in experiments on standard
classification datasets.

On average, our CPU implementation of the streaming decision
forest training process is able to process the addition of 5000 new
samples in 30ms per tree. In order not to stall the interactive system
while the learner is updating its structure, the learning process is
running as a background task, and can make use of all the available
CPU cores. Note that we split at most 4 leaves per epoch, as empiri-
cally this helps gather better statistics of the split candidates. GPU
implementations (e.g. [Sharp 2008]) could drastically speed-up the
learning process, and also allow more samples to be processed.

Sampling Training Voxels. In order for the online classifier to
update its structure and the distributions stored in the leaves, training
samples must be fed to the classifier. We sample at random an equal
number of voxels for each class from regions of the volume that
have been hand-labeled. Each voxel is assigned its current label as
given by the mean-field inference, allowing us to learn both from
the explicitly user-labeled regions (HS andHE) and also from the
labels that have been propagated by the CRF inference.

Given the voxels in the current view frustum, an equal number
of random samples (1000 in our implementation) of each class are
extracted. Samples are extracted in small batches spaced by constant
time steps, except for when the user is interacting with the world.

6.2 Voxel-Oriented Patch Features

The ability of the decision forest to learn to distinguish different
object classes depends on the availability of discriminative features.
A variety of features have been used with great success in the past.
For 2D applications, these have included pixel comparisons [Lepetit
and Fua 2006], texton region integrals [Shotton et al. 2006], and
invariant descriptors such as SIFT [Lowe 1999] and HOG [Dalal and
Triggs 2005]. Features that describe 3D point clouds and meshes
have also been proposed, including rotation invariant spin images
[Johnson 1997], SfM point-cloud derived features [Brostow et al.
2008], and difference of normals [Ioanou et al. 2012]. Such features
are typically designed with certain invariances in mind, including
additive photometric invariance, and 2D or 3D rotation invariance.
Such invariances can help the classifier by reducing the amount of
training data required (though, too much invariance can lead to loss
of discriminative power).

For our real-time application, speed is crucial, and given the dy-
namic nature of the scene, we do not have the time to first extract
a mesh or point-cloud before computing features. As one of our
key contributions, we thus propose a new type of feature, the voxel-
oriented patch (VOP) that can be efficiently computed directly from
the TSDF volume, and are 3D rotation invariant. Our implementa-
tion can efficiently handle the computation of features for millions
of voxels.

For a voxel i of interest at position pi, a VOP Vi is extracted
as follows; see also Fig. 5. The voxel’s normal ni is calculated
directly from the gradient of the TSDF values, and defines a plane
(p− pi) · ni = 0. Choosing an arbitrary vector on this plane as an
initial x-axis, and a third, orthogonal vector as a y-axis, we form an
image patch of size r× r that contains the color values stored in the
TSDF on the plane. To reduce the effect of illumination (especially
specularities) we employ the CIELab color space, storing the raw

Fig. 5. Illustration of Voxel-Oriented Patches (VOPs). VOPs encode height
and color information directly from the TSDF without requiring explicit
surface extraction. They are also fully 3D rotation invariant. Note that for
illustration purposes the VOP shown above store RGB, which is not the
setup used in our system as described in 6.2.

L component as well as a/(a+ b) and b/(a+ b). To complement
the appearance information, each Vi also stores a signed distance to
the dominant horizontal surface present in the scene. Note that the
resolution of the patch size (i.e. mm per pixel) can be independent
of the resolution of the TSDF reconstruction volume; our current
implementation uses r = 13 with a resolution of 10 mm per pixel.

To achieve rotation invariance, we compute a histogram of inten-
sity gradients in the image patch, and rotate the patch to align with
the strongest gradient orientation, in precisely the same way as SIFT
[Lowe 1999].

We end up with a VOP Vi that can now store discriminative
information about the local appearance around voxel i with full
3D rotation invariance. Examples are given in Figure 5. Note that
these features exploit the fact that the TSDF volumetric integration
process ‘spreads’ the color information along the camera ray within
the truncation window, such that the voxel i does not need to be
precisely aligned with the implicit surface to contain interesting and
discriminative information. If the patch intersects regions of empty
space (those with a TSDF weight of zero), the relevant pixel in the
patch is flagged with an ‘invalid’ color value, which provides for a
weak geometric cue.

A single VOP is computed on the GPU at each voxel being
processed by the forest. This is done without having to extract the
surface explicitly from the TSDF volume. Note that the forest will
evaluate split functions (see below) with different parameters on the
same VOP as it descends its trees; the VOP needs only be computed
once per voxel for a full evaluation of the forest.

Possible variants of VOPs traverses the volume along the normal
direction towards the nearest zero-crossing in the TSDF and then
either take the color and the distance along the normal as the VOP
pixel value. This was found to be too expensive for our real-time
requirements and were not explored further. Other potential variants
to explore could make use of the raw TSDF value as a way to
describe the geometric properties of the object to learn.

6.3 Split Functions

Our split functions come in three varieties: VOP-based, surface
orientation, and world height.

The VOP-based split functions work as follows. Each split node
in the forest performs a comparison by either taking the raw value

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

10 • Valentin et al.

or pairwise operations between two VOP pixels’ colors

f(i; θ) = Vi(x1, y1, c1) op Vi(x2, y2, c2) > τ (18)

where op ∈ {+,−}, (x1, y1) and (x2, y2) specify particular pixels
in the VOP, c1 and c2 specify color channels, τ is a threshold, and
θ = (VOP, op, x1, y1, c1, x2, y2, c2, τ) define the parameters of
this VOP-based split function. The second type of split function
applies a threshold to the dihedral angle between the surface normal
and the world up vector. These are designed to help separate classes
such as wall and table which are often flat and textureless, and thus
would be difficult to split using a texture or geometry-based feature
such as a VOP. The final split function applies a threshold to the
world height, allowing the classifier to efficiently deal with ‘easy’
classes such as the floor.

The choice between the three types of split function, and the
parameters θ thereof, is determined during the learning process.
Note that the classifier will make the easiest choice available to it.
For example, if world height is discriminative for the current training
examples, it will use it. If this results in mistakes (for example, the
user moves an object from a table to the floor) then the user can
correct the labels and the forest can then be updated to use other
features that are more appropriate for this object class.

6.4 Efficient test time classification

The learned decision forests are extremely efficient to evaluate at
test time. Our GPU-based implementation can handle approximately
17 million voxel classifications per second. Which compares well
with the roughly 3-10 million voxels visible the view frustum at
once [Nießner et al. 2013]. To maintain interactive rates, we batch
the visible voxels randomly and only test one batch at each frame.
Each voxel is assigned a flag to say whether it has been classified
yet or not. Once all voxels have been processed, the process repeats,
applying the forest to the volume which may have been updated in
the mean-time.

7. RESULTS

We first present qualitative results, then discuss efficiency of our
system, and finally provide quantitative results.

7.1 Qualitative results

Given the interactive and sequential nature of our approach, the
accompanying video best demonstrates the capabilities of our sys-
tem. Fig. 12 shows results from four recorded datasets. In both
LIVINGROOM and KITCHEN the user labels one half of the scene
interactively. The model is learned online, and tested on the sec-
ond part of the scene. The DESK sequence is an office table with
computer monitor and objects such as phones, and textured objects
such as books. After user labeling, the test sequence is based on
the user reshuffling the desk, and automatically labeling the objects.
BEDROOM is a bed containing multiple objects, which is user la-
beled. The user returns to this bedroom, from a completely different
viewpoint and reconstructs the scene, and objects are automatically
segmented using the online learned model. All these examples in-
clude a variety of objects, some of which are uniformly colored,
whilst others are heavily textured. The video also demonstrates the
power of our online approach, in particular allowing for continual
correction of the model during segmentation and learning.

Propagation of User Labels. The user strokes the surface of
objects in the physical world. Our system interprets such gesture as
a paint stroke, and voice input is used to associate an object class

Fig. 6. Label propagation. Our efficient inference engine smoothly prop-
agates class labels from the voxels touched by the user to the rest of the
volume. Here we show examples taken from three environments of the
coarse user labels (top row) and three time steps (middle three rows) as the
mean-field updates are applied over time. The pairwise terms in our energy
encourage a smooth segmentation that respects object boundaries. The last
row shows the final label propagation results for all hand-labeled objects.

label with the corresponding ‘touched’ voxels. Then, our mean-
field inference engine (see Sec. 5) propagates these labels through
the reconstructed scene, very efficiently. Thanks to the pairwise
potentials (3) the result is a spatially smooth segmentation that
adheres to object boundaries. Examples of label propagation are
shown in Fig. 6.

Forest Predictions. Our system learns a streaming random forest
classifier in a background CPU thread given the labels provided by
the user. At some point, the user selects ‘test mode’, and the forest
starts classifying all voxels. In Fig. 7 we illustrate the resulting
intermediate predictions (the ‘unaries’ in the middle column), and
compare them with the final, smoothed result obtained by running
the mean-field inference on these unaries (right column). Let us
focus on LIVINGROOM in the figure. In the first row, we see an
example result in the region used for training the forest. Here, all
the chairs are blue, and as expected, the unaries and mean-field
results are of very high quality. The second row shows a failure case
(highlighted by the arrows) in a region of the environment that was
not used for training. The seat of the yellow chair gets confused
with the floor, since only a blue chair was used for learning. At this
point the user makes a stroke interaction (not shown) to correct the
labels of the chair, and the forest is updated. After correction (row
three) the chair can be correctly recognized. Note, the ability of our
system to correct mistakes is crucial: no learning system is perfect,
and our approach allows the user to see immediately where more
training data (and thus user interaction) is required and to provide
it in a natural way. This final row illustrates the generalization
capabilities of our system to previously unavailable viewpoints.
Scene 2 shows slightly noisier predictions from the forest, due in
part to more challenging lighting conditions and problems with
holes in the reconstruction (no user corrections were made in this
sequence). The mean-field inference does a good job of smoothing
and improving the final result, though some errors do remain that
we expect could be corrected through simple further user strokes
(an advantage of an online system).

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

SemanticPaint: Interactive 3D Labeling and Learning at your Fingertips • 11

RGB volume Forest prediction Mean-field result RGB volume Forest prediction Mean-field result

KitchenLivingRoom

Fig. 7. Forest predictions and final mean-field inference results for two scenes. Our streaming random forest is able to learn to make per-voxel predictions about
the object classes present in the scene. Each pixel is classified independently, and so the forest predictions can be somewhat noisy. The mean-field inference
effectively smooths these predictions to produce a final labeling output to display to the user. The arrows indicate a region that is initially incorrectly labeled
(2nd row), but is successfully corrected (3rd row) by updating the forest based on new user interactions.

Discriminative features. The training data given to the streaming
random forest is a transformation of the RGB-D values around each
training point. That transformation is usually referred to as a feature.
The discriminative power of the feature used to describe these voxels
directly impacts the quality of the object segmentation. We compare
the proposed VOP feature against fast and established features in
the 2D object segmentation literature as well as one widely used
3D feature. The features we compare against are SURF [Bay et al.
2008] (OpenCV implementation), depth probes [Shotton et al. 2011],
difference of mean color of two randomly sampled boxes [Shotton
et al. 2006], color probe (similar to the depth probe, but in the RGB
image) and SPIN images [Johnson 1997] (PCL implementation).
Fig. 8 illustrates the qualitative classification results obtained by
the aforementioned features. It has to be noted that we also tried to
compare against PCL’s implementation of PPF [Drost et al. 2010].
For each scene, we extracted the model of each object (mug, duvet
cover, etc.). The approach failed to correctly detect most objects,
even in the point clouds from which models were extracted from.
Consequently, we did not include that method in the comparisons.

7.2 Computational Efficiency.

The inherently volumetric nature of our approach parallelizes well
on modern GPU architectures. For our experiments we employed
an Nvidia Titan with 6GB of RAM, although the system works
on lower-end setups for smaller scenes. We provide approximate
system timings in Table I. Although the timings change as a func-
tion of the number of visible voxels and resolution, in all tests we

Table I. Approximate system timing. Despite small fluctuations we
observed consistently good, interactive frame rates.

Component Reconst. Update forest Sampling Mean-field Forest Eval.
Timing 20ms 30ms 140ms 2-10ms 5ms

Reconst. = reconstruction, Eval. = evaluation.

performed we observed interactive frame rates. Numbers are pro-
vided for 6mm voxel resolution. Note that the forest learning runs
asynchronously in a background thread. This thread continuously
samples new labeled training data from the current view frustum
and updates itself. This ensures an up-to-date forest is available for
classification whenever the user requests it.

7.3 Quantitative results

System Components. We first evaluate the accuracy of our main
system components, namely the user segmentation, streaming ran-
dom forest and the mean-field filtering of the forest predictions,
based on the sequences introduced earlier. For each sequence, a
series of RGB-D keyframes were hand-labeled with object segmen-
tations. Keyframes were selected to ensure full coverage of the scene.
Examples of these ground-truth images are shown in Fig. 9. These
ground-truth images are then projected and aggregated onto the
underlying TSDF, and then back-projected to all the views of each
sequence. This generates a total of 4176 frames for LIVINGROOM,
12346 frames for KITCHEN, 7583 frames for BEDROOM, and 8916

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

12 • Valentin et al.

LivingRoom Bedroom Kitchen Desk

RGB

Ground
truth

VOP

Diff. of
RGB

means

Depth
probe

Color
probe

SURF

SPIN

Fig. 8. Quantitative results for the proposed VOP and baseline features on
different scenes. One can observe that the proposed VOP feature leads to
qualitatively better results than all the baseline approaches.

Fig. 9. Example ground truth labels. From left to right: BEDROOM, DESK,
KITCHEN and LIVINGROOM.

Table II. Evaluation of the different components of the system
on different scenes. The measure corresponds to the percentage

of correctly classified pixels.
Component LivingRoom Bedroom Kitchen Desk Average
User Interaction 99.35% 97.61% 96.09% 97.73% 97.7%
Forest prediciton 94.57% 88.31% 82.58% 90.29% 88.94%
Final Inference 96.26% 95.19% 90.69% 95.55% 94.42%

frames for DESK, of which roughly a third is used for test, and the
rest for training.

Table II shows the percentage of correctly classified pixels for
each component. It can be observed that the accuracy of all compo-
nents is high and that the mean-field filtering provides for a good
improvement on top of the predictions made by the forest.

Voxel-Oriented Patch Features. Using the same dataset, we
evaluate the discriminative power of the proposed VOP feature
against the baseline features listed in Sec. 7.1. For all these baseline

Table III. Evaluation of the proposed feature descriptor against the
baseline descriptors. The measure used is the percentage of

correctly classified pixels. Note that overall VOP is also much better
than the baseline methods under the class average precision and

intersection over union measures.
Feature LivingRoom Bedroom Kitchen Desk Average
VOP 94.57% 88.31% 82.58% 90.29% 88.94%
Diff. of RGB means 80% 71.84% 76.29% 73.42% 75.39%
Depth probe 77.54% 61.79% 84.9% 68.9% 73.06%
Color probe 56.39% 65.68% 60.77% 60.74% 60.9%
SURF 43.74% 67.12% 57% 58.13% 56.5%
SPIN 58.77% 43.22% 48.41% 36.1% 46.63%

features, we set the neighborhood from which data are sampled to be
similar to the neighborhood from which VOP sample data from. Tab.
III shows these comparisons. One can observe that the proposed
VOP feature provides for a substantial margin of discriminative
power compared to the different baseline methods.

Streaming Random Forests. To evaluate the contribution of our
new streaming random forest (SRF) learning algorithm, we compare
it against two well known online decision forest algorithms: online
random forest (ORF) [Saffari et al. 2009] and Hoeffding trees (HT)
[Domingos and Hulten 2000]. As an object can be trained in a
sequential fashion, our system inherently has to deal with non-
IID data. In order to perform quantitative evaluations, we use the
dataset of [Lai et al. 2011] which contains 300 objects organized
into 51 categories. Each of these objects is spun around a turntable
at constant speed. One revolution of each object is recorded from
3 different points of view using a RGB-D camera. To generate an
online and non-IID setting, each category is added sequentially.
For each object and each viewpoint, a consecutive segment of one
third of the images of each object is kept for test purposes and
the rest is used for training. All the learning methods have been
evaluated over an increasing number of object classes, where the
classes present and their order vary for each configuration. Fig. 10
show the corresponding results which demonstrate that the proposed
learning algorithm outperforms the baseline methods regardless the
number of classes used. Note that for these experiments, we use
the difference of mean color of two randomly sampled boxes as a
feature [Shotton et al. 2006].

8. DISCUSSION

We have demonstrated a practical system which allows a user to
interactively segment and label the surrounding environment in real-
time. The labeling happens both explicitly through user interaction
with the physical objects, and implicitly through the decision forest’s
ability to infer class labels in unlabeled parts of the scene.

Applications. We foresee numerous potential practical applica-
tions of our system.

Our system can be used to quickly gathering large numbers of
labeled 3D environments for training large-scale visual recognition
systems such as [Krizhevsky et al. 2012; Silberman and Fergus
2011]. Large-scale offline machine learning systems are currently
attempting to solve the more general object recognition problem
in both 2D [Krizhevsky et al. 2012] and 3D [Silberman and Fer-
gus 2011]. But this requires vast amounts of labeled training data.
Despite progress in crowd-sourcing, data collection and labeling,
especially at the pixel/voxel level, remains difficult and expensive,
especially for 3D environments. We envisage that our system could
be deployed to rapidly capture large numbers of labeled 3D envi-

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

SemanticPaint: Interactive 3D Labeling and Learning at your Fingertips • 13

20

30

40

50

60

70

80

90

5 10 15 20 25 30 35 40 45 50

%
 c

la
ss

 a
ve

ra
ge

 p
re

ci
si

o
n

classes

Class Average Precision

SRF ORF HT

10

20

30

40

50

60

70

5 10 15 20 25 30 35 40 45 50

%
 IU

classes

Intersection / Union

SRF ORF HT

Fig. 10. Comparison of the proposed streaming random forest (SRF) algo-
rithm against online random forest (ORF) and Hoeffding trees (HT) on the
dataset described in 7.3. For each configuration of the classes, each learner
contains 3 trees and the results have been averaged over 10 folds. These
figures demonstrate that the proposed method comfortably outperforms all
the baselines.

ronments and thus hasten the availability of more general-purpose
recognition systems.

Personalized environment maps with known object class segmen-
tations could be used for way-finding and navigation, either for
robots or end users (e.g. the partially sighted). For example, you
could ask your robot to find and bring you objects by semantically
breaking down the world (e.g. ‘bring me the cup by the chair in the
living room’). Furthermore, if such a model was maintained and
updated over time, finding lost objects could be as simply as uttering
a few words (e.g. ‘where have my gloves gone?!’). Augmented real-
ity gaming could be a rich source of application. Imagine quickly
scanning in and labeling your living room, and then associating ob-
ject classes with aspects of the game. For example, game characters
to sit on chairs or pick up and drink from a cup. Such augmented
reality scenarios could be expanded for planning the renovation of
a building, automating inventory, and designing interiors [Merrell
et al. 2011].

Limitations. Despite very encouraging results, which we hope
will inspire future work, our system clearly has limitations. So far
we have only demonstrated simple real-world scenes, and it is clear
that our system would struggle with more complex scenes. As shown
in Fig. 11 there are currently many failure cases.

One of the main issues comes in our use of appearance data.
While the combination of appearance and geometry adds a great
deal of discriminative power, the use of RGB data comes at a cost.

Fig. 11. Example failure cases, including: incorrect labels for segmented
objects e.g. mouse and keyboard (bottom left), as well as misclassification
of background voxels (top left, top right, and bottom right). Also ‘bleeding’
of labels around the edges of objects.

Careful calibration of an RGB camera with respect to the depth
sensor is required, as well as temporal synchronization between
the two. Spatial or temporal misregistration between the sensors
can cause misclassification (or ‘bleeding’) at object boundaries, as
shown in Fig. 11. In addition, our learning is not robust to strong
illumination changes across different viewpoints of an object. As
shown in Fig. 11 (top left) this can result in misclassification of
certain labels as the viewpoint of the camera changes. Using more
samples at different time intervals could help during the learning
phase. However, an interesting avenue of future work would be to
focus purely on geometric features.

Furthermore, while our method segments textured objects (i.e.
non-uniformly colored objects), especially with strong geometric
features, it cannot currently scale to segmentation of more complex
foreground objects or backgrounds. Our learning is also very much
local, and using global context, such as the relationship of objects
to the ground plane could provide strong priors for classification.

Another challenge in the learning is to robustly support a ‘back-
ground’ class. Currently when we add a new training example, we
sample voxels associated with the segmented object, as well as
other ‘background’ voxels (that are unlabeled). This can lead to
issues in the classification if a particular object is first labeled as
background and then annotated by the user. Additionally, learning
a background class for varied scenes is also challenging, as any
new unobserved geometry and/or appearance will confuse the clas-
sification. As shown in Fig. 11 (bottom right) the oven has not be
learned as part of the background, and is therefore misclassified.
Clearly here the interactive nature of our system, could allow the
user to quickly label the oven or re-learn to ensure it is added to the
background class.

In terms of interaction, our system currently uses a voice com-
mand to switch between annotation, training and test modes. We
plan an extension where both the learning and forest predictions
are always turned on. This will require considerable care to avoid
‘drift’ in the learned category models: the feedback loop would
mean that small errors could quickly become amplified. We also
believe additional modes of interaction such as voice priors (e.g.
‘walls are vertical’), as well as more intelligent sampling of training
examples would improve results. Finally, algorithmic parameters
such as pairwise weights are currently set at compile time (these
are cross-validated and common across all datasets shown). Given

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

14 • Valentin et al.

a small training set (perhaps with boot-strapping), more reliable
settings could be automatically selected online.

9. CONCLUSIONS

We have presented a system that allows a user to interactively seg-
ment and label an environment quickly and easily. A real-time
algorithm reconstructs a 3D model of the surrounding scene as the
user captures it. The user can interact with the world by painting on
surfaces and using voice commands to provide object class labels.
A GPU-enabled mean-field inference algorithm then propagates the
user’s strokes through a volumetric random field model represent-
ing the scene. This results in a spatially smooth segmentation that
respects object boundaries. In the background, the propagated la-
bels are used to build a classifier, using our new streaming decision
forests training algorithm. Once trained, the forest can predict a
distribution over object labels for previously unseen voxels. These
predictions are finally incorporated back into the 3D random field,
and mean-field inference provides the final 3D semantic segmen-
tation to the user. Our method generates dense 3D models that are
broken down into semantic parts in just minutes.

Our system hopefully brings us closer to a future where people
can create semantic models of their environments in lightweight
ways, which can then be used in a variety of interactive applications,
from robot guidance, to aiding partially sighted people, to helping
us find objects and navigate our worlds, or experience new types of
augmented realities. It thus helps computers not only reason about
space around them, but gives the geometry they observe semantic
meaning. Our system also hopefully moves us closer to the vision
of life-long learning: where semantic models adapt and extend to
new object classes online, as users continuously interact with the
world. With the increased power of mobile devices, coupled with
ultra-mobile depth cameras, we hope such online semantic modeling
tools will become more commonplace in our future lives.

REFERENCES

ABDELRAHMAN, M., AONO, M., EL-MELEGY, M., FARAG, A., FER-
REIRA, A., JOHAN, H., LI, B., LU, Y., MACHADO, J., PASCOAL, P. B.,
AND TATSUMA, A. 2013. SHREC13: Retrieval of objects captured with
low-cost depth-sensing cameras. In Proc. Eurographics Workshop.

ANAND, A., KOPPULA, H. S., JOACHIMS, T., AND SAXENA, A. 2013.
Contextually guided semantic labeling and search for three-dimensional
point clouds. The International Journal of Robotics Research 32, 1, 19–34.

BAY, H., ESS, A., TUYTELAARS, T., AND GOOL, L. V. 2008. Surf: Speeded
up robust features”, computer vision and image understanding. In Proc.
CVIU.

BIFET, A., HOLMES, G., PFAHRINGER, B., KIRKBY, R., AND GAVALDÀ,
R. 2009. New ensemble methods for evolving data streams. In Proc.
SIGKDD.

BONDE, U., BADRINARAYANAN, V., AND CIPOLLA, R. 2013. Multi scale
shape index for 3D object recognition. In Scale Space and Variational
Methods in Computer Vision. Springer, 306–318.

BOYKOV, Y., VEKSLER, O., AND ZABIH, R. 2001. Fast approximate energy
minimization via graph cuts. IEEE Trans. PAMI 23, 11.

BREIMAN, L. 2001. Random forests. Machine Learning 45, 1.
BROSTOW, G. J., SHOTTON, J., FAUQUEUR, J., AND CIPOLLA, R. 2008.

Segmentation and recognition using structure from motion point clouds.
In Proc. ECCV.

CASTLE, R. O., GAWLEY, D., KLEIN, G., AND MURRAY, D. W. 2007.
Towards simultaneous recognition, localization and mapping for hand-held
and wearable cameras. In Proc. ICRA.

CHEN, J., BAUTEMBACH, D., AND IZADI, S. 2013. Scalable real-time
volumetric surface reconstruction. ACM TOG 32, 4, 113.

CHEN, X., GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. A benchmark
for 3D mesh segmentation. ACM TOG 28, 3, 73.

CHENG, M.-M., ZHENG, S., LIN, W.-Y., VINEET, V., STURGESS, P.,
CROOK, N., MITRA, N., AND TORR, P. 2014. ImageSpirit: Verbal
guided image parsing. ACM TOG.

COUPRIE, C., FARABET, C., NAJMAN, L., AND LECUN, Y. 2013. Indoor
semantic segmentation using depth information. arXiv:1301.3572.

CRIMINISI, A. AND SHOTTON, J. 2013. Decision forests for computer
vision and medical image analysis. Springer.

CURLESS, B. AND LEVOY, M. 1996. A volumetric method for building
complex models from range images. In Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. ACM, 303–
312.

DALAL, N. AND TRIGGS, B. 2005. Histograms of oriented gradients for
human detection. In Proc. CVPR.

DOMINGOS, P. AND HULTEN, G. 2000. Mining high-speed data streams.
In Proc. SIGKDD.

DROST, B., ULRICH, M., NAVAB, N., AND ILIC, S. 2010. Model globally,
match locally: Efcient and robust 3d object recognition. In Proc. CVPR.

FIORAIO, N. AND DI STEFANO, L. 2013. Joint detection, tracking and
mapping by semantic bundle adjustment. In Proc. CVPR.

GEIGER, A., LENZ, P., AND URTASUN, R. 2012. Are we ready for au-
tonomous driving? The KITTI vision benchmark suite. In Proc. CVPR.

GUPTA, A., EFROS, A. A., AND HEBERT, M. 2010. Blocks world revisited:
Image understanding using qualitative geometry and mechanics. In ECCV.

HÄNE, C., ZACH, C., COHEN, A., ANGST, R., AND POLLEFEYS, M. 2013.
Joint 3D scene reconstruction and class segmentation. In Proc. CVPR.

HERBST, E., HENRY, P., AND FOX, D. 2014. Toward online 3-d object
segmentation and mapping. In IEEE International Conference on Robotics
and Automation (ICRA).

HIRSCHMULLER, H. 2008. Stereo processing by semiglobal matching and
mutual information. Trans. PAMI 30, 2, 328–341.

IOANOU, Y., TAATI, B., HARRAP, R., AND GREENSPAN, M. 2012. Differ-
ence of normals as a multi-scale operator in unorganized point clouds. In
Proc. 3DIMPVT.

IZADI, S., KIM, D., HILLIGES, O., MOLYNEAUX, D., NEWCOMBE, R.,
KOHLI, P., SHOTTON, J., HODGES, S., FREEMAN, D., DAVISON, A.,
AND FITZGIBBON, A. 2011. KinectFusion: Real-time 3D reconstruction
and interaction using a moving depth camera. In Proc. UIST. 559–568.

JOHNSON, A. 1997. Spin-images: A representation for 3-d surface matching.
Ph.D. thesis, Robotics Institute, Carnegie Mellon University.

KÄHLER, O. AND REID, I. 2013. Efficient 3D scene labeling using fields
of trees. In Proc. ICCV.

KALOGERAKIS, E., HERTZMANN, A., AND SINGH, K. 2010. Learning 3D
mesh segmentation and labeling. ACM TOG 29, 4, 102.

KARPATHY, A., MILLER, S., AND FEI-FEI, L. 2013. Object discovery in
3D scenes via shape analysis. In Proc. ICRA.

KIM, B.-S., KOHLI, P., AND SAVARESE, S. 2013. 3D scene understanding
by voxel-CRF. In Proc. ICCV.

KIM, V. G., LI, W., MITRA, N. J., CHAUDHURI, S., DIVERDI, S., AND

FUNKHOUSER, T. 2013. Learning part-based templates from large collec-
tions of 3D shapes. ACM TOG.

KIM, Y. M., MITRA, N. J., YAN, D.-M., AND GUIBAS, L. 2012. Acquiring
3D indoor environments with variability and repetition. ACM TOG 31, 6.

KOHLI, P., LADICKY, L., AND TORR, P. H. S. 2009. Robust higher order
potentials for enforcing label consistency. IJCV .

KOLLER, D. AND FRIEDMAN, N. 2009. Probabilistic Graphical Models:
Principles and Techniques. MIT Press.

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

SemanticPaint: Interactive 3D Labeling and Learning at your Fingertips • 15

KOPPULA, H. S., ANAND, A., JOACHIMS, T., AND SAXENA, A. 2011.
Semantic labeling of 3D point clouds for indoor scenes. In Proc. NIPS.

KRÄHENBÜHL, P. AND KOLTUN, V. 2011. Efficient inference in fully
connected CRFs with Gaussian edge potentials. In NIPS.

KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. 2012. ImageNet
classification with deep convolutional neural networks. In Proc. NIPS.

LADICKỲ, L., STURGESS, P., RUSSELL, C., SENGUPTA, S., BASTANLAR,
Y., CLOCKSIN, W., AND TORR, P. H. 2012. Joint optimization for object
class segmentation and dense stereo reconstruction. IJCV 100, 2, 122–133.

LAFFERTY, J., MCCALLUM, A., AND PEREIRA, F. C. 2001. Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data.

LAI, K., BO, L., REN, X., , AND FOX, D. 2011. A large-scale hierarchical
multi-view rgb-d object dataset. In Proc. ICRA.

LEPETIT, V. AND FUA, P. 2006. Keypoint recognition using randomized
trees. IEEE Trans. PAMI.

LEVOY, M., PULLI, K., CURLESS, B., RUSINKIEWICZ, S., KOLLER, D.,
PEREIRA, L., GINZTON, M., ANDERSON, S., DAVIS, J., GINSBERG,
J., ET AL. 2000. The digital Michelangelo project: 3D scanning of large
statues. In Proc. SIGGRAPH. ACM.

LIN, D., FIDLER, S., AND URTASUN, R. 2013. Holistic scene understanding
for 3D object detection with RGBD cameras. In Proc. ICCV.

LIN, H., GAO, J., ZHOU, Y., LU, G., YE, M., ZHANG, C., LIU, L., AND

YANG, R. 2013. Semantic decomposition and reconstruction of residential
scenes from LiDAR data. ACM TOG 32, 4.

LOWE, D. G. 1999. Object recognition from local scale-invariant features.
In Proc. ICCV.

MERRELL, P., SCHKUFZA, E., LI, Z., AGRAWALA, M., AND KOLTUN, V.
2011. Interactive furniture layout using interior design guidelines. ACM
TOG.

NAN, L., XIE, K., AND SHARF, A. 2012. A search-classify approach for
cluttered indoor scene understanding. ACM TOG 31, 6, 137.

NEWCOMBE, R. A., IZADI, S., HILLIGES, O., MOLYNEAUX, D., KIM, D.,
DAVISON, A. J., KOHLI, P., SHOTTON, J., HODGES, S., AND FITZGIB-
BON, A. 2011. KinectFusion: Real-time dense surface mapping and
tracking. In Proc. ISMAR.

NEWCOMBE, R. A., LOVEGROVE, S. J., AND DAVISON, A. J. 2011.
DTAM: Dense tracking and mapping in real-time. In Proc. ICCV.

NIESSNER, M., ZOLLHÖFER, M., IZADI, S., AND STAMMINGER, M. 2013.
Real-time 3D reconstruction at scale using voxel hashing. ACM TOG 32, 6.

POLLEFEYS, M., NISTÉR, D., FRAHM, J., AKBARZADEH, A., MORDOHAI,
P., CLIPP, B., ENGELS, C., GALLUP, D., KIM, S., MERRELL, P., ET AL.
2008. Detailed real-time urban 3D reconstruction from video. IJCV 78, 2.

POSNER, I., CUMMINS, M., AND NEWMAN, P. 2009. A generative frame-
work for fast urban labeling using spatial and temporal context. Au-
tonomous Robots 26, 2-3, 153–170.

PRADEEP, V., RHEMANN, C., IZADI, S., ZACH, C., BLEYER, M., AND

BATHICHE, S. 2013. Monofusion: Real-time 3D reconstruction of small
scenes with a single web camera. In Proc. ISMAR.

RAMOS, F., NIETO, J., AND DURRANT-WHYTE, H. 2008. Combining
object recognition and SLAM for extended map representations. In Ex-
perimental Robotics. Springer, 55–64.

REN, X., BO, L., AND FOX, D. 2012. RGB-(D) scene labeling: Features
and algorithms. In Proc. CVPR.

ROBERTS, L. G. 1963. Machine perception of three-dimensional solids.
Ph.D. thesis, Massachusetts Institute of Technology.

ROTHER, C., KOLMOGOROV, V., AND BLAKE, A. 2004a. GrabCut - inter-
active foreground extraction using iterated graph cuts. ACM TOG 23, 3.

ROTHER, C., KOLMOGOROV, V., AND BLAKE, A. 2004b. Grabcut: Interac-
tive foreground extraction using iterated graph cuts. In ACM Transactions
on Graphics (TOG). Vol. 23. ACM, 309–314.

RUSINKIEWICZ, S., HALL-HOLT, O., AND LEVOY, M. 2002. Real-time
3D model acquisition. ACM TOG 21, 3, 438–446.

RUSSELL, B. C., TORRALBA, A., MURPHY, K. P., AND FREEMAN, W. T.
2008. Labelme: a database and web-based tool for image annotation.
International journal of computer vision 77, 1-3, 157–173.

SAFFARI, A., LEISTNER, C., SANTNER, J., GODEC, M., AND BISCHOF,
H. 2009. On-line random forests. In IEEE ICCV Workshop.

SALAS-MORENO, R. F., NEWCOMBE, R. A., STRASDAT, H., KELLY,
P. H., AND DAVISON, A. J. 2013. SLAM++: Simultaneous localisation
and mapping at the level of objects. In Proc. CVPR.

SENGUPTA, S., GREVESON, E., SHAHROKNI, A., AND TORR, P. H. 2013.
Urban 3D semantic modelling using stereo vision. In Proc. ICRA.

SHAN, Q., ADAMS, R., CURLESS, B., FURUKAWA, Y., AND SEITZ, S. M.
2013. The visual turing test for scene reconstruction. In Proc. 3DTV.

SHAO, T., XU, W., ZHOU, K., WANG, J., LI, D., AND GUO, B. 2012.
An interactive approach to semantic modeling of indoor scenes with an
RGBD camera. ACM TOG 31, 6, 136.

SHAPIRA, L., SHALOM, S., SHAMIR, A., COHEN-OR, D., AND ZHANG,
H. 2010. Contextual part analogies in 3D objects. IJCV 89, 2-3, 309–326.

SHARP, T. 2008. Implementing decision trees and forests on a gpu. In
ECCV. Springer, 595–608.

SHEN, C.-H., FU, H., CHEN, K., AND HU, S.-M. 2012. Structure recovery
by part assembly. ACM TOG 31, 6, 180.

SHOTTON, J., FITZGIBBON, A., COOK, M., SHARP, T., FINOCCHIO, M.,
MOORE, R., KIPMAN, A., AND BLAKE, A. 2011. Real-time human pose
recognition in parts from single depth images. In Proc. CVPR.

SHOTTON, J., WINN, J., ROTHER, C., AND CRIMINISI, A. 2006. Tex-
tonBoost: Joint appearance, shape and context modeling for multi-class
object recognition and segmentation. In Proc. ECCV.

SILBERMAN, N. AND FERGUS, R. 2011. Indoor scene segmentation using
a structured light sensor. In Proc. ICCV Workshop.

SILBERMAN, N., HOIEM, D., KOHLI, P., AND FERGUS, R. 2012. Indoor
segmentation and support inference from RGBD images. In Proc. ECCV.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2006. Photo tourism:
exploring photo collections in 3D. ACM TOG 25, 3.

STÜCKLER, J., WALDVOGEL, B., SCHULZ, H., AND BEHNKE, S. 2013.
Dense real-time mapping of object-class semantics from RGB-D video.
Journal of Real-Time Image Processing, 1–11.

VALENTIN, J. P., SENGUPTA, S., WARRELL, J., SHAHROKNI, A., AND

TORR, P. H. 2013. Mesh based semantic modelling for indoor and outdoor
scenes. In Proc. CVPR.

VINEET, V. AND NARAYANAN, P. 2008. Cuda cuts: Fast graph cuts on the
gpu. In CVPR Workshops. IEEE, 1–8.

VITTER, J. S. 1985. Random sampling with a reservoir. ACM TOMS 11, 1.
WANG, Y., FENG, J., WU, Z., WANG, J., AND CHANG, S.-F. 2014. From

low-cost depth sensors to cad: Cross-domain 3d shape retrieval via regres-
sion tree fields. In European Conference on Computer Vision (ECCV).

XIAO, J. 2014. A 2D + 3D rich data approach to scene understanding. Ph.D.
thesis, Massachusetts Institute of Technology.

XIAO, J., HAYS, J., EHINGER, K. A., OLIVA, A., AND TORRALBA, A.
2010. SUN database: Large-scale scene recognition from abbey to zoo. In
Proc. CVPR.

XIAO, J., OWENS, A., AND TORRALBA, A. 2013. SUN3D: A database of
big spaces reconstructed using sfm and object labels. In Proc. ICCV.

YAO, A., GALL, J., LEISTNER, C., AND VAN GOOL, L. 2012. Interactive
object detection. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on. IEEE, 3242–3249.

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

16 • Valentin et al.

User Labels Final 3D Model Final Prediction

Fig. 12. Final results from our four datasets. From top to bottom: DESK, BEDROOM, LIVINGROOM and KITCHEN. Left column shows user specified labels.
Middle column shows final textured 3D model. Right column shows final prediction after classification and inference.

ACM Transactions on Graphics, Vol. 34, No. 5, Article 106, Publication date: August 2015.

