
Rendering Subdivision Surfaces
using

Hardware Tessellation

Der Technischen Fakultät
der Friedrich-Alexander-Universität

Erlangen-Nürnberg
zur

Erlangung des Grades Dr.-Ing.

vorgelegt von

Matthias Nießner

aus Gunzenhausen



Als Dissertation genehmigt
von der Technischen Fakultät

der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 15.07.2013
Vorsitzender des Promotionsorgans: Prof. Dr.-Ing. habil. Marion Merklein
Gutachter: Prof. Dr. Günther Greiner

Prof. Dr. Hans-Peter Seidel



Revision 1.00
©2013, Copyright Matthias Nießner

Matthias.Niessner@cs.fau.de
--

All Rights Reserved
Disney/Pixar images are copyrighted, and may not be repurposed for any use.

--
Alle Rechte vorbehalten

Die Bilder von Disney/Pixar unterliegen dem Urheberrecht
und dürfen nicht anderweitig verwendet werden.





Abstract

Computer-generated images are an essential part of today's life where an
increasing demand for richer images requires more and more visual de-
tail. e quality of resulting images is strongly dependent on the repre-
sentation of the underlying surface geometry. is is particularly impor-
tant in the movie industry where subdivision surfaces have evolved into an
industry standard. While subdivision surfaces provide artists with a so-
phisticated level of Ęexibility for modeling, the corresponding image gen-
eration is computationally expensive. For this reason, movie productions
perform rendering offline on large-scale render farms. In this thesis we
present techniques that facilitate the use of high-quality movie content in
real-time applications that run on commodity desktop computers. We uti-
lize modern graphics hardware and use hardware tessellation to generate
surface geometry on-the-Ęy based on patches. e key advantage of hard-
ware tessellation is the ability to generate geometry on-chip and to raster-
ize obtained polygons directly, thus minimizing memory I/O and enabling
cost-effective animations since only patch control points need to be updated
every frame. We ĕrst convert subdivision surfaces into patch primitives
that can be processed by the tessellation unit. en patches are directly
evaluated rather than by iterative subdivision. In addition, we add high-
frequency surface detail on top of a base surface by using an analytic dis-
placement function. Both displaced surface positions and corresponding
normals are obtained from this function and the underlying subdivision
surface. We further present techniques to speed up rendering by culling
hidden patches, thus avoiding unnecessary computations. For interaction
amongst objects themselves we also present a method that performs colli-
sion detection on hardware-tessellated dynamic objects. In conclusion, we
provide a comprehensive solution for using subdivision surfaces in real-
time applications. We believe that the next generation of games and au-
thoring tools will beneĕt from our techniques in order to allow for render-
ing and animating highly detailed surfaces.

i





Acknowledgements

Writing a thesis on your own is hardly feasible. erefore, I have to thank
a lot of people for their help and support.

First of all I would like to thank my Ph.D advisor Günther Greiner who
allowed me to join his amazing group; the computer graphics group at the
University of Erlangen-Nuremberg. He continuously supported me, gave
me unlimited academic freedom and guided me through the past years. I
am very grateful for having such a great advisor and mentor.

I would also like to thank Marc Stamminger who draw my interest to the
ĕeld of computer graphics and advised both my study and diploma the-
sis. He is always available to give thorough advice and his positive way of
thinking is really unique.

A special thanks goes to Charles Loop who was my mentor during three
internships at Microso Research. I was allowed to beneĕt from his deep
insights into computer graphics in countless very productive discussions.
Working with him was always a pleasure and he made my internships a
most enjoyable experience.

I am a strong believer in the success of joint work and collaboration. us,
I would like to particularly thank all the fantastic co-authors of my papers:
Tony DeRose, Günther Greiner, Shahram Izadi, Benjamin Keinert, Nadine
Kuhnert, Charles Loop, MarkMeyer, Georg Michelson, Henry Schäfer, Kai
Selgrad, Christian Siegl, Marc Stamminger, Roman Sturm, Michael Zoll-
höfer. I am very thankful for all their contributions that helped me to suc-
cessfully write this thesis.

Further, I want to thank all my colleagues at the computer graphics group of
the University Erlangen-Nuremberg for such a great working environment:
Maria Baroti, Frank Bauer, Elmar Dolgener, Christian Eisenacher, Gün-
ther Greiner, Roberto Grosso, Benjamin Keinert, Jan Kretschmer, Michael

iii



Martinek, Qurin Meyer, Magdalena Prus, Nadja Ray, Henry Schäfer, Kai
Selgrad, Christian Siegl, Marc Stamminger, Jochen Süßmuth, Michael Zoll-
höfer. In particular, I thank my office mate Michael Zollhöfer for patiently
listening to all my complaints and weird research ideas, and Jochen Süß-
muth for the LATEX-template of this thesis. Another thanks goes to the com-
puter graphics group atMicroso Research in Redmond for all the interest-
ing conversions at the group lunches: Mark Finch, Brian Guenter, Hugues
Hoppe, Neel Joshi, Charles Loop, John Snyder.

However, the most signiĕcant contribution to my thesis is attributed to my
parents. eir unconditional support and believe in me shaped not only
my personality but also allowed me to exclusively focus on my studies. I
never had to worry about anything beyond my education, for what I am
very grateful. is eventually led to the successful completion of this thesis.

I also thank different parties for providing the test models that are being
used in this thesis: Disney/Pixar (McQueen,CarBody,GarbageTruck, Sandy
Terrain; thanks toMarkMeyer formaking this possible), Bay Raitt (Monster
Frog, Big Guy, Sportscar),e Blender Foundation (DragonHead,CowCar-
cass, Chinchilla,Mushroom), Headus (metamorphosis) Pty Ltd. (Killeroo).

--- Matthias Nießner,
Erlangen Jul. 2013

iv



Contents

1 Introduction and Fundamentals 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Subdivision Surfaces . . . . . . . . . . . . . . . . . . . . . 6
1.4 Graphics Processing Units . . . . . . . . . . . . . . . . . . 9

1.4.1 GPU Architectures . . . . . . . . . . . . . . . . . 9
1.4.2 Graphics Pipeline and Hardware Tessellation . . . 10

I Subdivision Surface Rendering 13

2 Introduction 15

3 Previous Work 17

4 Feature Adaptive GPU Rendering of Subdivision Surfaces 21
4.1 Introduction and Algorithm Overview . . . . . . . . . . . 21
4.2 Table Driven Subdivision on the GPU . . . . . . . . . . . . 24
4.3 Feature Adaptive Subdivision . . . . . . . . . . . . . . . . 26
4.4 Patch Construction . . . . . . . . . . . . . . . . . . . . . . 28

4.4.1 Full Patches . . . . . . . . . . . . . . . . . . . . . 28
4.4.2 Transition Patches . . . . . . . . . . . . . . . . . . 29

4.5 Watertight Evaluation . . . . . . . . . . . . . . . . . . . . 31
4.5.1 Same Subdivision Level . . . . . . . . . . . . . . . 31
4.5.2 Between Subdivision Levels . . . . . . . . . . . . . 35

4.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6.1 Extraordinary Vertices . . . . . . . . . . . . . . . 36
4.6.2 Semi-Sharp Creases . . . . . . . . . . . . . . . . . 36
4.6.3 Hierarchical Detail . . . . . . . . . . . . . . . . . 38
4.6.4 Displacement Mapping . . . . . . . . . . . . . . . 39

v



Contents

4.7 Adaptive Level of Detail . . . . . . . . . . . . . . . . . . . 39
4.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8.1 Comparison to Global Mesh Reĕnement . . . . . . 42
4.8.2 Comparison toDirect Evaluation andApproximate

Patching Algorithms . . . . . . . . . . . . . . . . . 44
4.8.3 Semi-Sharp Creases and Hierarchical Edits . . . . 46
4.8.4 Memory Requirements . . . . . . . . . . . . . . . 47

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Efficient Evaluation of Semi-Sharp Creases 49
5.1 Introduction and Algorithm Overview . . . . . . . . . . . 49
5.2 Evaluation of Semi-Sharp Creases in Regular Patches . . . 50

5.2.1 Fractional Sharpness . . . . . . . . . . . . . . . . 54
5.3 Evaluation of Semi-Sharp Creases in Irregular Patches . . . 55
5.4 GPU Implementation using Hardware Tessellation . . . . . 57
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 60

II High-frequency Detail on Subdivision Surfaces 61

6 Introduction 63

7 Previous Work 65

8 Analytic GPU Displacement Mapping for Subdivision Surfaces 67
8.1 Introduction and Algorithm Overview . . . . . . . . . . . 67

8.1.1 Solutions and Contributions . . . . . . . . . . . . 67
8.1.2 Algorithm Overview . . . . . . . . . . . . . . . . 69

8.2 Tile-Based Texture Format . . . . . . . . . . . . . . . . . . 72
8.2.1 Displacement Data Generation . . . . . . . . . . . 73
8.2.2 Overlap at Extraordinary Vertices . . . . . . . . . 74
8.2.3 Mip Levels and Global Texture Design . . . . . . . 74
8.2.4 Non-uniform Tile Sizes . . . . . . . . . . . . . . . 76

8.3 Surface Rendering . . . . . . . . . . . . . . . . . . . . . . 76
8.3.1 Surface Evaluation . . . . . . . . . . . . . . . . . . 77

vi



Contents

8.3.2 Approximate Shading . . . . . . . . . . . . . . . . 79
8.3.3 Rendering using Hardware Tessellation . . . . . . 79
8.3.4 Base Surface Evaluation . . . . . . . . . . . . . . . 80

8.4 Level of Detail . . . . . . . . . . . . . . . . . . . . . . . . 81
8.4.1 Tessellation Factor Estimation . . . . . . . . . . . 82
8.4.2 Mip Level Selection . . . . . . . . . . . . . . . . . 83

8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 87

III Performance Enhancement by Patch Culling 89

9 Introduction 91

10 Previous Work 93
10.1 Back-Patch Culling Techniques . . . . . . . . . . . . . . . 93
10.2 Occlusion Culling . . . . . . . . . . . . . . . . . . . . . . 94

11 Effective Back-Patch Culling for Hardware Tessellation 97
11.1 Introduction and Algorithm Overview . . . . . . . . . . . 97
11.2 Parametric Tangent Plane . . . . . . . . . . . . . . . . . . 98
11.3 Visibility Classiĕcation . . . . . . . . . . . . . . . . . . . . 100

11.3.1 Triangle Culling . . . . . . . . . . . . . . . . . . . 100
11.3.2 Patch Culling . . . . . . . . . . . . . . . . . . . . 101

11.4 Serial Algorithm . . . . . . . . . . . . . . . . . . . . . . . 102
11.4.1 e 4D Cross Product . . . . . . . . . . . . . . . . 104

11.5 Parallel Algorithm . . . . . . . . . . . . . . . . . . . . . . 104
11.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . 106
11.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 108

12 Patch-Based Occlusion Culling for Hardware Tessellation 109
12.1 Introduction and Algorithm Overview . . . . . . . . . . . 109
12.2 Culling Pipeline . . . . . . . . . . . . . . . . . . . . . . . 110

12.2.1 Aggressive Culling . . . . . . . . . . . . . . . . . . 112
12.3 Applying Cull Decision . . . . . . . . . . . . . . . . . . . 113

12.3.1 Computing Occlusion Data . . . . . . . . . . . . . 113

vii



Contents

12.3.2 Cull Decision . . . . . . . . . . . . . . . . . . . . 114
12.3.3 Displaced Patches . . . . . . . . . . . . . . . . . . 115

12.4 Implementation Details . . . . . . . . . . . . . . . . . . . 118
12.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

12.5.1 Cull Computations . . . . . . . . . . . . . . . . . 119
12.5.2 Culling within Individual Objects . . . . . . . . . 120
12.5.3 General Culling . . . . . . . . . . . . . . . . . . . 122

12.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 126

IV Collision Detection 127

13 Introduction 129

14 Previous Work 131

15 Collision Detection for Hardware Tessellation 133
15.1 Introduction and Algorithm Overview . . . . . . . . . . . 133
15.2 Collision Candidates . . . . . . . . . . . . . . . . . . . . . 134
15.3 Voxelization . . . . . . . . . . . . . . . . . . . . . . . . . 137
15.4 Collision Detection . . . . . . . . . . . . . . . . . . . . . . 139

15.4.1 Basic Collision Test . . . . . . . . . . . . . . . . . 139
15.4.2 Extended Collision Test . . . . . . . . . . . . . . . 139

15.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
15.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 141

16 Conlusion 143

viii



List of Figures

1.1 Labeling of the vertices of two subdivision levels . . . . . . 7
1.2 Subdivision with sharp subdivision rules . . . . . . . . . . 9
1.3 Graphics pipeline . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Hardware tessellation patterns . . . . . . . . . . . . . . . . 12

4.1 Car Body rendering . . . . . . . . . . . . . . . . . . . . . 22
4.2 Feature adaptive subdivision approach . . . . . . . . . . . 23
4.3 Subdivision tables . . . . . . . . . . . . . . . . . . . . . . 25
4.4 Patch arrangement with feature adaptive subdivision . . . . 26
4.5 Adaptive subdivision at extraordinary vertices . . . . . . . 27
4.6 Patch constellations for transition patches . . . . . . . . . . 28
4.7 Patch structure using feature adaptive subdivision . . . . . 30
4.8 Subdivision of a cube used as the base mesh . . . . . . . . 37
4.9 Garbage Truck rendering . . . . . . . . . . . . . . . . . . . 38
4.10 Displacement and hierarchical edit rendering . . . . . . . 40
4.11 Monster Frog rendering . . . . . . . . . . . . . . . . . . . 45
4.12 Performance measurements . . . . . . . . . . . . . . . . . 46
4.13 Memory requirements . . . . . . . . . . . . . . . . . . . . 48

5.1 Semi-sharp subdivision on curves . . . . . . . . . . . . . . 53
5.2 Domain partitioning at extraordinary vertices . . . . . . . 56
5.3 Performance measurements . . . . . . . . . . . . . . . . . 59
5.4 Sportscar rendering . . . . . . . . . . . . . . . . . . . . . . 60

8.1 Patch structure of base and displaced surface . . . . . . . . 70
8.2 Displacement algorithm . . . . . . . . . . . . . . . . . . . 72
8.3 Tile-based texture format . . . . . . . . . . . . . . . . . . 75
8.4 Dragon Head andMonster Frog rendering . . . . . . . . . . 84
8.5 Rendering applying our level-of-detail scheme . . . . . . . 85
8.6 Comparison between accurate and approximate shading . 86

ix



List of Figures

8.7 Performance measurements . . . . . . . . . . . . . . . . . 88

11.1 Killeroo rendering . . . . . . . . . . . . . . . . . . . . . . 98
11.2 Performance measurements . . . . . . . . . . . . . . . . . 108

12.1 Rendering results with culling . . . . . . . . . . . . . . . . 111
12.2 Occlusion culling algorithm . . . . . . . . . . . . . . . . . 112
12.3 Hierarchical-Z map . . . . . . . . . . . . . . . . . . . . . 114
12.4 Hierarchical-Z access patterns . . . . . . . . . . . . . . . . 115
12.5 Camera-aligned frustum . . . . . . . . . . . . . . . . . . . 116
12.6 Results for different displacement bounds . . . . . . . . . . 118
12.7 Cull time and Hierarchical-Z build time . . . . . . . . . . 120
12.8 Test models for occlusion culling . . . . . . . . . . . . . . 121
12.9 Break-even point for culling . . . . . . . . . . . . . . . . . 124

15.1 Collision detection algorithm . . . . . . . . . . . . . . . . 134
15.2 Collision detection visualization . . . . . . . . . . . . . . . 135
15.3 Oriented bounding box extension . . . . . . . . . . . . . . 136
15.4 Physics with collision detection . . . . . . . . . . . . . . . 141

x



List of Tables

4.1 Performance measurements . . . . . . . . . . . . . . . . . 42
4.2 Performance for different tess factors . . . . . . . . . . . . 47

11.1 Average cull rates . . . . . . . . . . . . . . . . . . . . . . . 107

12.1 Cull rates for displaced models . . . . . . . . . . . . . . . 122

15.1 Performance measurements . . . . . . . . . . . . . . . . . 142

xi





CHAPTER 1

Introduction and Fundamentals

1.1 Motivation

Computer-generated images have become an essential part of our daily life
in areas ranging from feature ĕlms to video games. Requirements regarding
performance and image quality depend on the respective application. For
instance, while in movies there is no tolerance for visual error, interactive
applications rely on approximations in order to achieve real-time perfor-
mance. Quality of generated images is signiĕcantly impacted by the under-
lying surface geometry. In particular, the representation of the provided
geometry is crucial. Typically, real-time applications make use of polygo-
nal object descriptions. While those can be efficiently processed by today's
graphics hardware, polygonal surfaces are only linearly approximated. An
alternative are tensor product surfaces where a set of regular control points
deĕnes a smooth surface. However, the requirement for regular control
point grids has limited their adoption. Subdivision surfaces close the gap
between polygonal and tensor product surfaces since they deĕne a smooth
surface on arbitrary topology.

Subdivision surfaces have been used extensively by the movie industry for
some time. High-quality surface geometry can be obtained by deĕning a
set of control points. Geometric properties correspond to the used sub-
division scheme. Subdivision surfaces are evaluated by applying a set of
subdivision rules in an iterative manner. is recursive evaluation is com-
putationally expensive, thus requiring a signiĕcant amount of resources. In
movie productions rendering of subdivision surfaces is performed in an of-
Ęine process, typically on large-scale render farms. e goal of this thesis
is to perform rendering of such surfaces in real-time on single desktop ma-

1



CHAPTER 1 Introduction and Fundamentals

chines, thus enabling the use of high-quality movie content in interactive
applications at minimal computational costs. For instance, the techniques
we present facilitate authoring tools to provide instant and accurate feed-
back for artists during content creation. In addition, movie content can be
used in video games without a labor-intensive and potentially error-prone
conversion process.

In order to perform rendering of subdivision surfaces in real-time, we uti-
lize modern but commodity graphics processing units (GPUs). In the re-
cent years GPUs have evolved to massively-parallel computing architec-
tures achieving multiple giga Ęoating point operations per second [Nvi08].
We attempt to exploit those capabilities by designing our algorithms ac-
cordingly. For instance, an important requirement is to keep memory I/O
low compared to performed Ęoating point operations. Hardware tessella-
tion [Mic09] ideally ĕts into this paradigm by processing patch primitives
that deĕne a smooth surface. Surface geometry is generated on-chip where
obtained polygons are directly rasterized without the need of further mem-
ory access. at facilitates low-cost mesh animations by updating patch
control points. With respect to subdivision surfaces the challenge is the
conversion into patch primitives that can be processed by the tessellation
unit. In addition, enabling high-frequency detail with displacements and
fast patch processing is essential. In this thesis we present approaches (see
Section 1.2) for hardware tessellation that together provide a comprehen-
sive solution for rendering subdivision surfaces in real-time.

1.2 Contributions

In this thesis we contribute to the ĕeld of subdivision surface rendering. We
present real-time rendering techniques for hardware tessellation that allow
the usage of subdivision surfaces in interactive applications such as video
games or authoring tools. e methods presented in this thesis range from
surface evaluation approaches that facilitate high-frequency surface detail
to culling and collision detection algorithms.

2



1.2 Contributions

Our contributions include the following approaches:

• FeatureAdaptiveGPURenderingof SubdivisionSurfaces (seeChap-
ter 4): We present a novel method for high-performance GPU based
rendering of Catmull-Clark subdivision surfaces. Unlike previous
methods, our algorithm computes the true limit surface up to ma-
chine precision, and is capable of rendering surfaces that conform to
the full RenderMan speciĕcation for Catmull-Clark surfaces. Specif-
ically, our algorithm can accommodate base meshes consisting of ar-
bitrary valence vertices and faces, and the surface can contain any
number and arrangement of semi-sharp creases and hierarchically
deĕned detail. We also present a variant of the algorithmwhich guar-
anteeswatertight positions andnormals,meaning that evendisplaced
surfaces can be rendered in a crack-free manner. Finally, we describe
a view dependent level-of-detail scheme which adapts to both the
depth of subdivision and the patch tessellation density. ough con-
siderably more general, the performance of our algorithm is compa-
rable to the best approximating method, and is considerably faster
than Stam's exact method [Sta98].

• Efficient Evaluation of Semi-Sharp Creases in Catmull-Clark Sub-
division Surfaces (see Chapter 5): We present a novel method to
evaluate semi-sharp creases in Catmull-Clark subdivision surfaces.
Our algorithm supports both integer and fractional crease tags cor-
responding to the RenderMan (Pixar) speciĕcation. In order to per-
form fast and efficient surface evaluations, we obtain a polynomial
surface representation given by the semi-sharp subdivision rules. We
apply direct surface evaluation on regular patches and we perform
adaptive subdivision around extraordinary vertices. In the end, we
are able to efficiently handle high-order sharpness tags at very low
cost. Compared to standard feature adaptive rendering, both ren-
der time and memory consumption are reduced from exponential to
linear complexity. Furthermore, we integrate our algorithm in the
hardware tessellation pipeline of modern GPUs. Our method is ide-
ally suited to real-time applications such as games or authoring tools.

3



CHAPTER 1 Introduction and Fundamentals

• AnalyticGPUDisplacementMapping for Subdivision Surfaces (see
Chapter 8): We present a novel method for leveraging hardware tes-
sellation to apply a higher order displacement function to a surface
at runtime. Displacement mapping is ideal for modern GPUs since
it enables high-frequency geometric surface detail on models with
low memory I/O. However, problems such as texture seams, normal
re-computation, and under-sampling artifacts have limited its adop-
tion. We provide a comprehensive solution to these problems by
introducing a smooth analytic displacement function. Coefficients
are stored in a GPU-friendly tile-based texture format, and a multi-
resolution mip hierarchy of this function is formed. We propose a
novel level-of-detail scheme by computing per vertex adaptive tessel-
lation factors and select the appropriate pre-ĕltered mip levels of the
displacement function. Our method obviates the need for a precom-
puted normal map since normals are directly derived from the dis-
placements. us, we are able to perform authoring and rendering
simultaneously without typical displacement map extraction from
a dense triangle mesh. In addition, our approach facilitates high-
quality shading since accurate surface normals are computed on a per
pixel basis. is not only is more Ęexible than the traditional combi-
nation of discrete displacements and normal maps, but also provides
faster runtime due to reduced memory I/O.

• Effective Back-Patch Culling for Hardware Tessellation (see Chap-
ter 11): We present a novel approach to speed up rendering for hard-
ware tessellation using back-patch culling. When rendering objects
with hardware tessellation, back-facing patches should be culled as
early as possible to avoid unnecessary surface evaluations, and setup
costs for the tessellator and rasterizer. For dynamic objects the pop-
ular cone of normals approach is usually approximated using tangent
and bitangent cones. is is faster to compute, but less effective. In-
stead we use the Bézier convex hull of the parametric tangent plane.
is ismuchmore accurate, and by operating in clip spacewe are able
to reduce the computational cost signiĕcantly. As our algorithm vec-
torizes well, our culling approach can be efficiently implemented on
the GPU allowing a substantial performance improvement.

4



1.2 Contributions

• Patch-BasedOcclusionCulling forHardwareTessellation (seeChap-
ter 12): We present an algorithm for performing occlusion culling
on a per patch basis designed to run within the hardware tessellation
pipeline. Our method dynamically generates a hierarchical Z-buffer,
bounds patches on-the-Ęy, and tests if a patch is occluded prior to
tessellation. In particular, we support displaced surfaces using tight
but conservative bounds that allow effective culling. In order to deal
with arbitrary scene environments, all patches can be occluders and
be occluded by other patches as well as standard triangle primitives.
We harness temporal coherence to maintain the visibility status of
patches. ese status bits are updated each frame and determine the
Hi-Z map contributors. e algorithm is conservative in a sense that
visible patches are never culled. Our method provides a simple, low-
cost, and effective way to avoid wasting computations rendering oc-
cluded patches. It is well-suited for real-time applications such as
games or authoring tools.

• CollisionDetection forHardware Tessellation (see Chapter 15): We
present a novel method for real-time collision detection of patch-
based, displacementmapped objects using hardware tessellation. Our
method supports fully animated, dynamically tessellated objects and
runs entirely on the GPU. In order to determine a collision between
two objects, we ĕrst ĕnd the intersecting volume of the correspond-
ing object-oriented bounding boxes. Next, patches of both objects
are tested for inclusion within this volume. All possibly colliding
patches are then voxelized into a uniform grid of single bit voxels.
Finally, the resulting voxelization is used to detect collisions. Test-
ing twomoderately complexmodels containing thousands of patches
can be done in less than a millisecond. is makes our approach ide-
ally suited for real-time applications such as games that use the hard-
ware tessellator.

5



CHAPTER 1 Introduction and Fundamentals

1.3 Subdivision Surfaces

Subdivision surfaces [SZD∗98] can be seen as a combination of tensor prod-
uct patches [Far96], [HLS93] and polygonal meshes. In contrast to ten-
sor product patches, they are deĕned on an arbitrary input topology but
also deĕne a smooth surface. Subdivision rules, that specify linear combi-
nations of control points, are used to reĕne control points. Each step re-
places a mesh given by control points and connectivity with a denser and
smother mesh. e limit surface of a subdivision surface is deĕned aer
an inĕnite number of iterations. Subdivision rules can be written in ma-
trix form; i.e., the subdivision matrix. A valid subdivision scheme must
have a subdivision matrix with eigenvalues λi with the following property:
 ≥ |λ| ≥ |λ| ≥ ... ≥ |λn|. Otherwise the limit surface would be unde-
ĕned since control points would either collapse or diverge.

ere exists a variety of subdivision schemes such as ButterĘy subdivision
[DLG90], Loop subdivision [Loo87], Doo-Sabin subdivision [DS78],

√
-

subdivision [Kob00],  −  subdivision [VZ01]. In this thesis we particu-
larly focus on Catmull-Clark subdivision [CC78] due to its relevance to the
movie industry. However, we would like to point out that our presented
techniques can be also applied to any other subdivision scheme.

Catmull-Clark Subdivision Catmull-Clark subdivision is applied to an
arbitrary input topology and provides a quad-only mesh aer one reĕne-
ment step. It generalizes bicubic B-splines since the limit surfaces is C

everywhere except on extraordinary points (vertices of valence different of
) where it is C. e algorithm is deĕned by a simple set of rules, which
are applied to a set of control points of a subdivision level i in order to gen-
erate the control points of the next subdivision level i+ . At each level new
face points (fj), edge points (ej) and vertex points (vj) are determined as a
weighted average of points of the previous level. Special rules are used for
handling features such as boundaries and creases.

e Catmull-Clark subdivision rules for face, edge, and vertex points with
valence n, as labeled in Figure 1.1, are deĕned as:

6



1.3 Subdivision Surfaces

• Faces rule: fi+ is the centroid of the vertices surrounding the face.

• Edge rule: ei+
j = 

 (v
i + eij + fi+

j− + fi+
j ),

• Vertex rule: vi+ = n−
n vi + 

n
∑
j
eij + 

n
∑
j
fi+
j .

v1

v0

e1
1

e1
0

en
0

e2
0

f 1
1

f 2
1

e3
1

e2
1

f n
1

e3
0

Figure 1.1: Labeling of vertices of the basemesh (subdivision level ) around the
vertex v of valence n and the next subdivision level .

Catmull-Clark surfaces have been extended by additional subdivision rules
in order to handle mesh boundaries [Nas87]. Boundary rules are also used
to deĕne inĕnitely sharp creases [HDD∗94]; i.e., edges that interpolate the
corresponding control points (crease edges). A vertex vj containing exactly
two crease edges ej and ek is considered to be a crease vertex. e following
sharp rules are used for both boundaries and sharp edges (crease rules):

• ei+
j = 

 (v
i + eij)

• vi+
j = 

 (e
i
j + vi + eik)

If a vertex is adjacent to three or more sharp edges or located on a corner
(i.e., a vertex adjacent to two edges) thenwe derive its successor by vi+ = vi
(corner rule).

e combination of both smooth and sharp subdivision results in semi-
sharp creases. FollowingDeRose et al. [DKT98], a semi-sharp crease (occa-

7



CHAPTER 1 Introduction and Fundamentals

sionally named semi-smooth in the literature) is deĕnedby addingweighted
sharpness tags to edges. Subdividing a semi-sharp edge creates two child
edges, each of which are tagged with the sharpness value of the parent mi-
nus one.

In order to deal with fractional smoothness and propagate sharpness prop-
erly, we use a slightly modiĕed scheme of DeRose et al. [DKT98]. e rules
are as follows, with e.s deĕning the sharpness of an edge:

• Face points are always the average of the surrounding points

• e with e.s = → smooth rule

• e with e.s ≥ → crease rule

• e with  ≤ e.s ≤ → (− e.s) · esmooth + e.s · ecrease

e deĕnition of the vertex sharpness v.s is used to handle vertices, where
v.s is the average of all incident edge sharpness tags and k is the number of
edges around a vertex v with e.s > :

• v with k < → smooth rule

• v with k >  ∧ v.s ≥ .→ corner rule

• v with k >  ∧  ≤ v.s ≤ → (− v.s) · vsmooth + v.s · vcorner

• v with k =  ∧ v.s ≥ .→ crease rule

• v with k =  ∧  ≤ v.s ≤ → (− v.s) · vsmooth + v.s · vcrease

Figure 1.2 shows the results when applying these rules to a pyramid. e
edges of the pyramid's base plane are tagged as sharp, thus turning the quad
at the bottom into a planar circular shape.

8



1.4 Graphics Processing Units

0

1

2

3

4
18

5

6

7

8

10

11

12

13

14

15

17

19

20

21

Figure 1.2: One subdivision step applied on a pyramid where the edges of the
base plane are tagged sharp.

1.4 Graphics Processing Units

1.4.1 GPU Architectures

Modern graphics processers aremassively parallel computation units. ey
are composed of several streaming multiprocessors (SMs) where each SM
is a vector unit. us, SMs can process data chunks in parallel following the
single-instruction-multiple-data (SIMD) principle. In this thesis we use an
NVIDIA GTX 480 for testing which has  SMs and a SIMD width of ,
facilitating  threads to run in parallel [WKP11]. e Fermi architecture
actually has  SMs, however, on the GTX 480model only  are functional.
Compared to CPUs, GPUs spend more dice area on compute rather than
on caches, thus making memory I/O particularly costly. While there is a
small amount of shared memory ( KB on an NVIDIA GTX 480) avail-
able on each SM that can be used as L1 cache, most data must be obtained
from global GPU memory. For instance, a SM issuing a global memory

9



CHAPTER 1 Introduction and Fundamentals

access introduction requires  clock cycles, however, in addition there is a
memory latency of about − clock cycles [Nvi08]. Typically, latency
is hidden by running a sufficient number of threads simultaneously; i.e., a
multiple of the actual physical cores. Nevertheless, in order to achieve peak
performance a sufficient amount of Ęoating point operations per memory
fetch is required [BFH04]. GPUs can be programmed for graphics purposes
using the OpenGL [Shr10] or DirectX [Mic09] API (we use the latter). An
overview of the corresponding graphics pipeline is shown in Section 1.4.2.
In addition, modern GPUs support GPU computing using CUDA [Nvi08],
OpenCL [M∗09] or Direct Compute [Mic09]. A user deĕned amount of
threads is executed in parallel whereas each thread follows a shared kernel
description.

Previous to hardware tessellation, GPU computing techniques have been
used to tessellate parametric surface geometry [SS09], [PEO09], [EL10],
[EML09]. Some of our presented approaches also rely on GPU comput-
ing (i.e., DirectX 11 compute kernels) since data is directly processed on
the GPU.

1.4.2 Graphics Pipeline and Hardware Tessellation

Figure 1.3 shows the graphics pipeline realized on current hardware, in-
cluding the tessellation unit. e pipeline consists of several programmable
shader stages and the conĕgurable tessellation unit. Hardware tessellation,
which our presented approaches particularly rely on, processes patch prim-
itives in parallel. Each patch primitve is composed of a set of control points
that deĕne a corresponding patch surface. e tessellation unit uses the
control points to generate a (potentially dense) polygonal surface geometry.
e generated polygons are directly consumed by the rasterization units of
the respective SMs without the need of further global memory access.

ere are three hardware tessellation stages in the graphics pipeline that
ĕt logically between vertex and geometry shading: hull shader, tessellation
unit and domain shader. Together, these stages provide for hardware tes-
sellation of 3- and 4-sided surface patches where a surface patch is a user

10



1.4 Graphics Processing Units

Pixel Shader Pixel Shader 
Programmable Per fragment 

Geometry Shader Geometry Shader 

Programmable Per (generated) triangle 

Domain Shader Domain Shader 

Programmable Per domain location 

Tessellator Tessellator 

Configurable Tess factors set domain locations 

Hull Shader Hull Shader 

Programmable Per patch / per patch control point 

Vertex Shader Vertex Shader 

Programmable Per input vertex 

Figure 1.3: Graphics pipeline according toDirectX 11nomenclature. For simplic-
ity we omit the input assembly, rasterization and outputmerger stagewhich are
öxed function stages.

speciĕed collection of arbitrary dimensional input control points. e pro-
grammable hull shader stage executes both a user speciĕed hull shader pro-
gram and a hull shader constant function. e hull shader program maps
the input control points to output control points by executing one thread
per output vertex. ere can be between 1 and 32, not necessarily equal in
number, input and output control points. A hull shader program might,
for example, implement a matrix-vector-multiply where each of n threads
performs anm way dot product of the input control points and a row of an
m × n matrix stored in constant memory. e purpose of the hull shader
constant function is to determine the tess factors for each edge of the 3- or 4-
sided patch domain as well as interior tess factors. e tess factors are used
to vary the tessellation of a patch at runtime. e ĕxed function tessellator

11



CHAPTER 1 Introduction and Fundamentals

unit uses the tess factors to generate a tessellation of the patch domain. e
tess factors do not need to be integer, and the maximum value on current
hardware is 64. Non-integer, or fractional, tess factors allow the tessella-
tor to continuously vary the tessellation rate without popping artifacts that
might result from strictly integer tessellation levels. A user provided do-
main shader program takes as input the output control points from the hull
shader and the 2D coordinates of a domain vertex generated by the tessel-
lator unit and evaluates the patch at the corresponding domain location. In
addition to position, the domain shader should output a surface normal,
texture coordinate, and any other data needed for pixel shading. Since each
domain vertex evaluation is independent of any other, domain shader ex-
ecution is efficiently parallelizable. Figure 1.4 shows examples of different
tessellation patterns (integer and fractional) created by the tessellation unit
using both triangle (Figure 1.4(a-c)) and quad domains (Figure 1.4(d-f)).

(a) tess factor  (b) tess factor . (c) tess factor .

(d) tess factor  (e) tess factor . (f ) tess factor .

Figure 1.4: Different tessellation patterns for integer and fractional tessellation
factors on triangle (top) and quad domains (bottom).

12



PART I

Subdivision Surface
Rendering





CHAPTER 2

Introduction

As discussed in Chapter 1 subdivision surfaces have been used extensively
by the feature ĕlm industry for some time. In particular, Catmull-Clark
subdivision surfaces [CC78] have become an industry standard. While we
describe our surface rendering approaches by example of Catmull-Clark
surfaces (see Chapters 4 and 5), our methods are also applicable to other
subdivision schemes such as Loop subdivision [Loo87]. Since their intro-
duction in 1978, Catmull-Clark surfaces have been extended in a number
of ways, including the treatment of boundaries [Nas87], inĕnitely sharp
creases [HDD∗94], semi-sharp creases [DKT98], andhierarchically deĕned
detail [Pix05]. e introduction of semi-sharp creases has proven to be par-
ticularly important as they allow realistic edges to be deĕned while keeping
memory footprints small. For example, the rounded edges of the steel frame
of the Garbage Truck shown in Figure 4.9 were created with semi-sharp
creases, requiring only a few bytes of tag data per creased edge. Achiev-
ing a similar shape without semi-sharp creases would require a base mesh
with signiĕcantly more vertices, faces, and edges. Similarly, the use of hier-
archical edits, as introduced by Forsey and Bartels [FB88] and as deĕned in
the RenderMan speciĕcation, allows detail at various resolutions to be spec-
iĕed much more efficiently than globally reĕning the mesh. An example is
shown in Figure 4.10(b) where the sandy terrain is modeled at one scale,
and the footprints are details that appear at a much ĕner scale. Previous to
the publication of our approaches [NLMD12, NLG12] there was no GPU
algorithm for the real-time rendering of Catmull-Clark surfaces possessing
semi-sharp creases or hierarchical detail. Despite approximate approaches
[LS08, MYP08, NYM∗08, LSNC09], or the direct, but considerably slower
Stam evaluation algorithm [Sta98] our approaches were also the ĕrst that
allow patching of subdivision surfaces.

15



CHAPTER 2 Introduction

In this part of the thesis we focus on rendering subdivision surfaces with
corresponding features; an elaborate displacement approach is proposed in
Chapter 8. For rendering we use hardware tessellation (see Section 1.4.2),
that exploits the compact representation and data independence of patch
primitives to produce triangle data for immediate consumption by the ras-
terization stage. e challenge is to convert theCatmull-Clark controlmesh
into a set of patches that can be processed by the tessellation unit. For regu-
lar faces those are bicubic B-spline patches that are composed of  control
points each. However, for irregular faces (faces that share a vertex with va-
lence different from ) the surface is only described by iterative subdivision
rules (see Section 1.3) rather than a patching scheme. e same applies to
features such as semi-sharp creases or hierarchical edits. An advantage of
using subdivision surfaces is that only the control points need to be updated
for animation. e GPU can amplify the coarse geometry on-the-Ęy with
very littlememory bandwidth to produce a dense tessellation of the surface.

To sum up, we propose two approaches for subdivision surface rendering.
e ĕrst is more general and renders the Catmull-Clark surface by applying
adaptive subdivision at features (see Chapter 4, [NLMD12]). e second
approach extends the ĕrst by focusing on meshes with semi-sharp creases
(see Chapter 5, [NLG12]).

16



CHAPTER 3

Previous Work

e problem of GPU based rendering of Catmull-Clark surfaces has re-
ceived considerable attention in recent years. We separate these approaches
into three categories: global mesh reĕnement, direct evaluation, and ap-
proximate patching.

Global mesh reĕnement:
Global mesh reĕnement implements subdivision according to its standard
deĕnition; i.e., the subdivision rules. A base mesh is repeatedly (possibly
adaptively) reĕned until the mesh achieves a sufficient density and then
the resulting faces are rendered. e work of Bunnell [Bun05], Shiue et
al. [SJP05], and Patney and Owens [PEO09] belong to this category. Global
reĕnement schemes require signiĕcantmemory I/O to stream controlmesh
data to and from GPU multiprocessors and global GPU memory (i.e., on-
and off-chip). We demonstrate in Section 4.8 that performing global reĕne-
ment iteratively is severely limited in performance as memory bandwidth
becomes the bottleneck.

Direct evaluation methods:
By leveraging the eigenstructure of a subdivision matrix Stam [Sta98] de-
veloped a method for directly evaluating subdivision surfaces at arbitrary
parametric values. In order to apply this approach, a control mesh must
have isolated extraordinary vertices. is means that two global reĕnement
steps must be applied to an arbitrary control mesh (only one for a quad
mesh) as a preprocess. Aerwards, Stam's algorithm can be easily imple-
mented on theGPUusing hardware tessellation. erefore, patch datamust
be transformed into eigenspace, making subsequent watertight boundary
evaluation problematic. To do patch evaluation, one of three possible sets
of precomputed eigenbasis functions must be evaluated. While this is feasi-

17



CHAPTER 3 Previous Work

ble, the complexity of the algorithm and signiĕcant amount of computation
limit performance (see Section 4.8). Furthermore, extending this approach
to the evaluation of semi-sharp creases and hierarchical details remains a
formidable challenge. Our approach presented in Chapter 5 is also based
on the eigenvalue decomposition of the subdivision matrix. However, in
contrast to Stam's approach we consider patches with semi-sharp creases.

Another direct evaluation approach has been proposed by Bolz and Schrö-
der originally targeting the CPU [BS02]. eir approach exploits the fact
that subdivision surfaces are linear functions of control point positions,
meaning that a basis function can be associated with each control point.
ese basis functions must be generated for all patch conĕgurations. In or-
der to keep basis function count within limits, they require extraordinary
vertices to be isolated. ey indicate that approximately 5300 tables for the
basis functions are required restricting vertex valence for interior patches
to 12. Evaluation of surface points and derivatives is therefore reduced to
dot products of the table values with control point positions. Extending
their method to accommodate semi-sharp creases and hierarchical detail is
problematic for several reasons. First, since crease sharpnesses can take on
fractional values, there are an unbounded number of potential basis func-
tions, meaning that the tables must be precomputed in a mesh-dependent
fashion, and the number of distinct tables can be very large. More funda-
mental is the fact that hierarchical detail coefficients are represented in local
surface frames (see Forsey and Bartels [FB88]), implying that the surface is
no longer linear in the control vertices, and hence basis functions do not
exist.

Approximation methods:
Due to the limitations of global reĕnement and current direct evaluation
methods, faster but approximate methods have been proposed. In antici-
pation of hardware tessellation, Loop and Schaefer [LS08] noted the high
cost of direct evaluation and the need for pre-tessellator subdivision. ey
proposed an approximation to a quads only Catmull-Clark limit surface
based on bicubic Bézier patches. Several variants along these lines have ap-
peared with various improvements to the restrictions onmesh connectivity
or underlying surface algorithm. For instance, a quads onlymethodwas de-

18



scribed by Myles et al. [MYP08] and Ni et al. [NYM∗08], a method to han-
dle amixture of triangles and quads was presented by Loop et al. [LSNC09],
and Myles et al. [MNP08] offer a method to deal with pentagonal patches
as well as quads and triangles. Finally, the case of inĕnitely sharp creases in
the context of an approximate Catmull-Clark subdivision on the GPU was
handled by Kovacs et al. [KMDZ09].

It has been understood for decades that adaptive tessellation requires a spe-
ciĕc strategy for eliminating cracks [Cat74] at boundaries between distinct
tessellation densities. Since a goal of our work is to create adaptive but
crack-free renderings, our method is similar to that of Von Herzen and
Barr [VHB87], where the notion of restricted quadtrees was introduced. A
quadtree is said to be restricted if the subdivision levels of adjacent cells dif-
fer at most by one. With this restriction it is relatively easy to avoid cracks.
Fortunately, the pattern of subdivision that naturally arises in our algorithm
presented in Chapter 4 ensures this condition.

19





CHAPTER 4

Feature Adaptive GPU Rendering of
Subdivision Surfaces

4.1 Introduction and Algorithm Overview

In this chapter we present an GPU approach for the real-time rendering
of Catmull-Clark surfaces that also processes features such as semi-sharp
creases or hierarchical detail. It uses a combination of GPU compute ker-
nels and hardware tessellation to adaptively patch Catmull-Clark surfaces.
e algorithm is exact rather than approximating (by exact we mean that
the vertices of our patch tessellations lie exactly on the limit surface up
to machine precision), and we present a variant that is capable of creating
watertight tessellations. is variant additionally satisĕes a much stronger
condition: namely, that abutting patches meet with bitwise identical posi-
tions and normals. With this stronger property surfaces with normal dis-
placements are also guaranteed to be crack-free. at becomes particularly
important for our displacement mapping approach depicted in Chapter 8.

e algorithm presented in this chapter is based on the idea of feature-
adaptive subdivision. It has long been known that regular faces of aCatmull-
Clark base mesh (that is, quad faces whose vertices have exactly four neigh-
bors) generate a single bicubic patch in the limit of inĕnite subdivision, and
that regions around extraordinary vertices (vertices having other than four
neighbors) give rise to an inĕnite nesting of bicubic patches that approach
a well-deĕned limit [DS78]. A similar recursive nesting of bicubic patches
also occurs near other kinds of features such as semi- or inĕnitely sharp
creases, as well as near regions affected by hierarchical detail. Our algo-
rithm exploits this fact to subdivide the mesh only in the vicinity of these

21



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

Figure 4.1: Input base mesh (left), subdivision patch structure (center), and önal
model rendered with our method (right). © Disney/Pixar

features. At each stage of local subdivision, new bicubic patches are gener-
ated that are directly rendered using hardware tessellation. Since we only
subdivide locally, our time and memory requirements are signiĕcantly less
than the naive approach of globally subdividing the entire base mesh each
step.

In addition to being more accurate and general than previous algorithms,
the performance of our approach is competitive with an optimized imple-
mentation of the fastest approximate scheme by Loop et al. [LSNC09] that
is based on Gregory Patches [Gre74]. We also show that our approach is
signiĕcantly faster than a GPU implementation of Stam's direct evaluation
procedure (see Section 4.8). Furthermore, we also demonstrate that itera-
tively reĕning amesh is inherentlymemory I/O bound, while our algorithm
utilizes hardware tessellation in order to avoid this limitation.

Feature adaptive rendering involves a CPU preprocessing step, as well as a
GPU runtime component. Input to our algorithm is a base control mesh
consisting of vertices and faces, alongwith optional data consisting of semi-
sharp crease edge tags and hierarchical details. In the CPU preprocessing
stage, we use these data to construct tables containing control mesh indices
that drive our feature adaptive subdivision process. Since these subdivision
tables implicitly encode mesh connectivity, no auxiliary data structures are
needed for this purpose. A unique table is constructed for each level of sub-
division up to a prescribed maximum, as well as ĕnal patch control point
index buffers as described in Section 4.2. e base mesh, subdivision ta-
bles, and patch index data are uploaded to the GPU, one time only, for sub-
sequent runtime processing. e output of this phase depends only on the

22



4.1 Introduction and Algorithm Overview

Tessellator 

Patch 

Evaluation 

GPU Kernels 

Table Driven 

Subdivision 

Patches Triangles 
Tables 

Base Vertices 

CPU 

Adaptive 

Subdivision 

Connectivity 

Runtime Precomputation 

Figure 4.2: Flowchart of our feature adaptive subdivision rendering approach.

topology of the base mesh, crease edges, and hierarchical detail; i.e., it is
independent of the geometric location of the control points.

For each frame rendered on the GPU, we use a two phase process. In the
ĕrst phase, we execute a series ofGPU compute kernels to performdata par-
allel Catmull-Clark subdivision of the base mesh. e index patterns used
by the compute kernels to gather vertex data needed to perform each subdi-
vision operation are entirely encoded in the subdivision tables. is process
is repeated for each level of subdivision until a maximum depth is reached;
this phase is described in Section 4.3. In the second GPU phase, we use the
hardware tessellator unit to render the bicubic patches corresponding to the
regular regions of the various subdivision levels computed in the ĕrst GPU
phase (see Section 4.4). In Section 4.5, we develop the special treatment
necessary to avoid cracks between adjacent patches, and in Section 4.7 we
discuss how the Ęexibility of our algorithmic framework can be used to im-
plement view dependent level-of-detail rendering. Since only base control
point positions need to be updated on theGPUeach frame, high-frame-rate
animation of complex models is achieved. We address only the rendering
of models once they have been animated. We do not address techniques for
creating compelling animation. An overview of our approach is shown in
Figure 4.2.

In summary, the main contributions of our approach are:

• e ĕrst table driven data-parallel subdivision method that supports
local reĕnement; we refer to this as feature adaptive subdivision.

23



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

• e ĕrst exact hardware tessellation algorithm of the true Catmull-
Clark limit surface, including arbitrary valence vertices and faces,
semi-sharp creases, and hierarchical details.

• A novel evaluation algorithm that guarantees bitwise identical eval-
uation of positions and normals of adjacent patches.

• A view dependent level-of-detail method that adapts to both subdi-
vision level and patch tessellation density.

4.2 Table Driven Subdivision on the GPU

While the rules of Catmull-Clark subdivision (see Section 1.3) are straight-
forward to implement on a CPU, an efficient implementation on the GPU
is non-trivial since neighborhood information is required. Fortunately, in
most feature ĕlm and game applications the connectivity and sharpness tags
of a mesh are typically invariant during animation, so a precomputed table
driven approach is feasible. ese tables are used at runtime to efficiently
guide the subdivision computations. Due to the data dependency of the
Catmull-Clark subdivision rules, face points must be computed ĕrst, fol-
lowed by edge, and then vertex points. We use three separate compute ker-
nels, one for each point type respectively. All kernels operate on a single
vertex buffer, used for all subdivision levels. We justify this strategy as it a)
simpliĕes our table construction, and b) optimizing this will have little im-
pact on frame rate. e vertices of the base mesh, which may be animated
at runtime, occupy a section at the beginning of this buffer. Starting from
the base mesh, the subdivision kernels will compute in parallel the reĕned
mesh for the next subdivision level.

e tables for the face, edge and vertex kernel are deĕned as follows. e
face kernel requires two buffers: one index buffer, whose entries are the
vertex buffer indices for each vertex of the face; a second buffer stores the
valence of the face along with an offset into the index buffer for the ĕrst
vertex of each face. Since a single (non-boundary) edge always has two
incident faces and vertices, the edge kernel needs a buffer for the indices

24



4.2 Table Driven Subdivision on the GPU

of these entities. In order to apply the edge rules, we also store the edge
sharpness values e.s. e data for the vertex kernel is similar to the face
kernel. We use an index buffer containing the indices of the incident edge
and vertex points. We also need a second buffer to store the vertex valence,
an index to predecessor of the vertex, the vertex sharpness v.s, and an offset
to the starting index in the ĕrst buffer. For dealing with the case of a vertex
on a crease, wemust also store the indices of the edges that specify the crease
(crease idx0, crease idx1). Figure 4.3 shows the subdivision tables for the
pyramid in Figure 1.2. For meshes with boundary, the subdivision tables
are adjusted according to the respective rules.

Figure 4.3: Subdivision tables for the pyramid of Figure 1.2: (a) is the vertex
buffer, (b) contains topology information, (c) are indices which point into the
vertex buffer and (d) provides the edge and vertex sharpness.

25



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

4.3 Feature Adaptive Subdivision

It is well known that the limit surface deĕned by Catmull-Clark subdivision
can be described by a collection of bicubic B-spline patches, where the set
has inĕnitely many patches around extraordinary vertices, as illustrated in
Figure 4.4(le). Similarly, near creases as shown in Figure 4.4(right), the
number of limit patches grows as the crease sharpness increases.

Figure 4.4: The arrangement of bicubic patches (blue) around an extraordinary
vertex (left), and near an inönitely sharp crease (right). Patches next to the re-
spective feature (green) are irregular.

Feature adaptive subdivision proceeds by identifying regular faces at each
stage of subdivision, rendering each of these directly as bicubic B-splines
using hardware tessellation (see Section 4.4). Irregular faces are reĕned,
and the process repeats at the next ĕner level. is strategy uses the same
compute kernels as outlined in Section 4.2, however, the subdivision table
creation is restricted to irregular faces. A face is regular only if it is a quad
with all regular vertices, if none of its edges or vertices are tagged as sharp,
and there are no hierarchical edits that would inĘuence the shape of the
limit patch. In all other cases the face is recognized as irregular, and subdi-
vision tables are generated for a minimal number of subfaces. As before, all
of this analysis and table generation is done on the CPU at preprocessing
time.

26



4.3 Feature Adaptive Subdivision

Vertex and edge tagging is done at each level, depending onhowmany times
the area around an irregular face should be subdivided. is might be the
maximumdesired subdivision depth around an extraordinary vertex, or the
sharpness of a semi-sharp edge. As a result, each subdivision level will be
a sequence of local control meshes that converge to the feature of interest
(see Figure 4.5).

Figure 4.5: Our adaptive subdivision scheme applied on a grid with four ex-
traordinary vertices. Subdivision is only performed in areas next to extraordinary
vertices.

ememory required to globally subdivide amesh to level k is proportional
to kF, where F is the number of faces in the originalmesh. Feature adaptive
subdivision generally requires far less memory as the size of the subdivision
tables is proportional to the total number of irregular faces at each subdi-
vision level. e exact storage requirements depend on the number and
arrangement of irregular faces, the sharpness of creases, and so on. How-
ever, an asymptotic upper bound can be obtained by making the worst case
assumption that every irregular edge (an edge is irregular if it is adjacent to
an extraordinary vertex, if it is tagged as a crease, or if a hierarchical edit in-
Ęuences the shape of one of the patches adjacent to the edge) is subdivided
into two irregular edges. If there are e edge tags in the original mesh, the
storage requirements for subdividing k levels is proportional to ke. Since e
is typically far smaller than the total number of edges in the original mesh,
and since k grows far less quickly than k, we achieve a signiĕcant reduc-
tion in memory use. Subdivision around extraordinary vertices behaves
even better, since the number of irregular faces grows linearly with respect
to the extraordinary vertex count (v) per subdivision step (≈ kv). Actual
memory requirements for various models are given in Section 4.8.4. Also

27



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

(1) (2) (3) (4) (5)

Figure 4.6: There are öve possible constellations for transition patches (TPs).
While TPs are colored red, the current level of subdivision is colored blue and
the next level is green. The domain split of a TP into several subpatches allows
full tessellation control on all edges, since shared edges always have the same
length.

note that our approach presented in Chapter 5 further reduces the memory
requirement for models with semi-sharp creases.

4.4 Patch Construction

Once the adaptive subdivision stage is complete (see Section 4.3), we use
the hardware tessellator to adaptively triangulate the resulting patches (see
Section 1.4.2). e number and location of sample points on patch edges
is determined by user provided tess factors. For each subdivision level we
deĕne two kinds of patches: full patches and transition patches.

4.4.1 Full Patches

Full patches (FPs) are patches that only share edges with patches of the
same subdivision level; those are either regular or irregular. Regular FPs
are passed through the hardware tessellation pipeline and rendered as bicu-
bic B-splines. We ensure by feature adaptive subdivision that irregular FPs
are only evaluated at patch corners. is means that for a given tessfactor
we must perform

⌈
log tessfactor

⌉
adaptive subdivision steps. Since cur-

rent hardware supports a maximum tessfactor of  (= ), no more than
 adaptive subdivision levels are required. In order to obtain the limit po-

28



4.4 Patch Construction

sitions and tangents of patch corners of irregular FPs, we use a special ver-
tex shader that applies the corresponding Catmull-Clark limit stencils (the
stenscils are provided in [HKD93], [LS08]). Using this approach, our sur-
face representation is exact; we show in Section 4.8 that this is signiĕcantly
faster than direct evaluation as proposed by Stam [Sta98].

4.4.2 Transition Patches

Note that the arrangement of bicubic patches created by adaptive subdivi-
sion ensures that adjacent patches correspond either to the same subdivi-
sion level, or their subdivision levels differ by one. Patches that are adja-
cent to a patch from the next subdivision level are called transition patches
(TPs). We additionally require that TPs are always regular. We enforce this
constraint during the subdivision preprocess bymarking for subdivision all
irregular patches that might become TPs. is constraint signiĕcantly sim-
pliĕes the algorithm at the expense of only a small number of additional
patches.

To obtain crack-free renderings, the hardware tessellator must evaluate ad-
jacent patches at corresponding domain locations along shared boundaries.
Setting the tess factors of shared edges to the same value will ensure this.
However, TPs by deĕnition share edges with neighboring patches at a dif-
ferent subdivision level. One solution to this problem would be using com-
patible power-of-two tess factors so that the tessellations will line up. How-
ever, allowing only power-of-two tess factors is a severe limitation that re-
duces the available Ęexibility provided by the tessellation unit.

In order to avoid this limitation, we split each TP into several subpatches
using a case analysis of the arrangement of the adjacent patches. Since each
patch boundary either belongs to the current or to the next subdivision
level, there are only  distinct cases as shown in Figure 4.6.

Each subdomain corresponds to a logically separate subpatch, though each
shares the same bicubic control points with its TP siblings. Evaluating a
subpatch involves a linear remapping of canonical patch coordinates (e.g.,
a triangular barycentric) to the corresponding TP subdomain, followed by

29



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

a tensor product evaluation of the patch. is means that each subdomain
type will be handled by draw calls requiring different constant hull and do-
main shaders; though we batch these according to subpatch type. However,
since the control points within a TP are shared for all subpatches, the ver-
tex and index buffers are the same. e overhead of multiple draw calls
with different shaders but the same buffers becomes negligible for a larger
number of patches.

Figure 4.7: The structure of patches around an extraordinary vertex; red areas
are transition patch domains, blue are regular Full Patches, green (central) indi-
cated irregular patch domains - note that by evaluating only at the corners of
these domains our scheme becomes exact.

By rendering TPs as several logically separate patches, we eliminate all T-
junctions in the patch structure of a surface. e TP structure around an
extraordinary vertex is illustrated in Figure 4.7. is means that as long we
assign consistent tess factors to shared edges, in principle a crack-free ren-
dered surface is obtained. In practice however, due to behavior of Ęoating
point numerics, additional care is required as discussed in Section 4.5.

e assignment of tess factors for patch edges should take into account the

30



4.5 Watertight Evaluation

subdivision level i that generated the patch. We discuss various strategies
for adapting the subdivision level and the assignment of tess factors in Sec-
tion 4.7.

4.5 Watertight Evaluation

Adjacent patches sharing identical tess factors is a necessary but not suf-
ĕcient condition to guarantee watertight rendering. Since Ęoating point
multiplication is neither associative nor distributive, evaluating adjacent
patches at the same parameter of a shared boundary may not produce bit-
wise identical results. eseminor discrepanciesmay result in visible cracks
(holes) between adjacent patches. In particular, inconsistent normals at
patch boundaries become an issue when applying surface displacements
(see Chapter 8).

In this section, we present a method for the watertight evaluation of the
patches generated by our feature adaptive subdivision approach. Moreover,
we show that this method results in positions and normals that are bitwise
identical along shared boundaries. We ĕrst describe a procedure for patches
at the same subdivision level, then we describe one for patches that belong
to different levels.

4.5.1 Same Subdivision Level

Castaño et al. [Cn08] propose an approach for watertight evaluation of
Bézier patches that matches the order of computations performed with re-
spect to either side of a shared boundary. However, they do not address the
conversion to the Bézier basis, required for subdivision surfaces; or how to
deal with irregular patches. Furthermore, their use of ownership assign-
ments for normals at patch corners has a large memory footprint.

In contrast, we exploit the B-spline basis where the same input data is used
for computing both positions and normals on either side of a shared patch
boundary. Our approach requires that Ęoating point addition and mul-

31



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

tiplication be commutative; fortunately, enabling the IEEE Ęoating point
strictness as a Ęag for the HLSL compiler will guarantee this.

We evaluate positions and derivatives of bicubic B-spline patches by appeal-
ing to their tensor product form:

S(u, v) = N(u) · P · N(v),
∂S
∂u (u, v) =

dN
du (u) · P · N(v),

∂S
∂v (u, v) = N(u) · P · dN

dv (v),

where N(t) = [N(t), . . . ,N(t)] are the univariate cubic B-spline basis
functions, and P = (Pi,j) is the  ×  array of patch control points. We
perform the computation of S(u, v) using repeated evaluation of univariate
B-spline curves as follows. We ĕrst compute a point parameterized by u
on each of the 4 curves deĕned by the columns of P. at is, we compute
the row vector of 4 points S(u) = [s(u), s(u), s(u), s(u)] = N(u) · P;
we then compute the surface point S(u, v) by univariate evaluation of S(u) ·
N(v). Derivatives are computed similarly using univariate evaluation. In
the domain shader we check if u =  or u =  is true, or if v =  or v = 
is true, then the evaluation must be on a domain boundary; if these are
both true, then the evaluation must be on a domain corner. ese cases are
handled separately as follows.

Domain Boundaries In this case, two patches will be evaluated indepen-
dently at corresponding domain locations. Since there is no globally con-
sistent u, v parameterization for a subdivision surface, there are a variety of
cases to consider at a boundary shared by two patches A and B. It could be,
for instance, that the boundary corresponds to uA =  and uB = , in which
case vA = vB along the boundary since both patches are right handed. Wa-
tertightness in this case is particularly easy to obtain since the v parameter
values match on either side of the boundary.

emore challenging case is when the two patches have the shared bound-
ary parameterized in opposite directions, for instance when vA =  − vB
along the shared boundary. As mentioned above, our surface evaluation

32



4.5 Watertight Evaluation

method reduces to repeated evaluation of B-spline curves. We therefore
require that our method produces bitwise identical results when reversing
the parametric direction of a curve. To be more precise, consider a cubic
B-spline curve C(u) deĕned by control points X = [X,X,X,X]

T; that is
C(u) := N(u) · X. Now consider the curve Cr(ur) that is parameterized in
the reverse direction: Cr(ur) := N(u) · Xr, where Xr := [X,X,X,X]

T.
We require that our evaluation method is reversal invariant in that it satis-
ĕes

C(u) = Cr(− u) and dC
du (u) = −dCr

du (− u) (4.1)

where equality means bitwise identical results.

e ĕrst step is to evaluate the B-spline basis functions so that N(u) =

Nr( − u), where Nr(u) := [N(u),N(u),N(u),N(u)] and dN
du (u) =

− dNr

du (−u). e following, relying only on commutativity of Ęoating point
addition, is such a procedure that computes the homogeneous form of the
basis functions and derivatives:

void EvalCubicBSpline(in float u,
out float N[4], out float NU[4])

{
float T = u;
float S = 1.0 - u;

N[0] = S*S*S;
N[1] = (4.0*S*S*S + T*T*T)+(12.0*S*T*S + 6.0*T*S*T);
N[2] = (4.0*T*T*T + S*S*S)+(12.0*T*S*T + 6.0*S*T*S);
N[3] = T*T*T;

NU[0] = -S*S;
NU[1] = -T*T - 4.0*T*S;
NU[2] = S*S + 4.0*S*T;
NU[3] = T*T;

}

Note that replacing u by −u in EvalCubicBSpline interchanges the val-
ues of S and T, leading to the reversal of both basis function values and

33



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

derivatives. e inhomogeneous values of the basis functions and deriva-
tives are computed by dividing by constant factors in a post division step
that is the same on both sides of the shared boundary.

e ĕnal step is to perform the dot product of X and N(u) to guarantee
Equation 4.1. We do so as follows:

C(u) = (XN(u) + XN(u)) + (XN(u) + XN(u))
= (XN(− u) + XN(− u)) +

(XN(− u) + XN(− u))
= Cr(− u)

A similar derivation establishes the necessary constraint on the derivatives
of C and Cr. Normal vectors are computed using the usual cross product
formula. Guaranteeing that they are bitwise identical on either side of a
shared boundary requires commutativity of both addition and multipli-
cation. Again, these commutativity requirements are satisĕed when using
IEEE Ęoating point strictness.

Domain Corners In the domain corner case, bi-reversal invariant evalu-
ation is required. For the corner u = v =  we structure the computation
as

S(, ) = [(P, · N() · N() + P, · N() · N()) +
(P, · N() · N() + P, · N() · N())] +
[(P, · N() · N() + P, · N() · N()) +
(P, · N() · N() + P, · N() · N())] +

P, · N() · N().

e computation of partial derivatives as well as the values of S at the other
corners, is handled similarly.

For irregular patches, we handlewatertightness using a special vertex shader
that computes the limit surface (see Section 4.4.1). By deĕnition there are
only corner points. Points that are adjacent to regular patches (those have
a valence of ) are evaluated bi-reversal invariantly as described above. e

34



4.5 Watertight Evaluation

remaining points are all extraordinary vertices, having only irregular patches
in common. Since these are evaluated on a per vertex level, the results are
shared so no special treatment is required.

4.5.2 Between Subdivision Levels

Special care must be taken for patches, generated by different subdivision
levels, that also share a boundary. As before, evaluations on either side of
a boundary must use the same input control point data. In order to ensure
this, we deĕne patches that share evaluations with a coarser subdivision
level as watertight critical patches (WCP). Note that a WCP can be either
a FP or a TP. Referring to Figure 4.6, for a WCP that is also a TP it must
be case  (domain boundary) or case  (domain corner). In this situation,
we augment the  control points for the WCP with the  control points
of its coarser level parent patch. ese  total control points can still be
handled efficiently by the tessellation unit. In the domain shader, if a point
is on a boundary between the current and the previous subdivision level, the
control points of the parent patch are used for computations. e evaluation
itself is done as proposed in Section 4.5.1.

We veriĕed our watertightness procedure empirically by streaming domain
shader output to CPU memory and comparing the results of correspond-
ing patch evaluations along shared boundaries. ese results conĕrm the
computations are indeed bitwise identical.

Our approach to watertight evaluation necessarily involves code branches
that treat domain boundaries and corners differently than domain interi-
ors. Depending on tessellation densities, this can result in a slowdown of as
much as x (see Section 4.8), due to the SIMD nature of GPU code execu-
tion. In our implementations, we treat watertight rendering as an optional
time versus image quality trade-off that may not be necessary for all appli-
cations, e.g., authoring versus game runtime.

35



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

4.6 Examples

In this section we present a number of examples to illustrate the range of
modeling features that can be accommodated with our algorithm.

4.6.1 Extraordinary Vertices

emost common reason to use subdivision surfaces instead of bicubic B-
splines is to deal with arbitrary topology; i.e., extraordinary vertices (ver-
tices with a valence different of ). Like previous algorithms, our method is
capable of renderingmeshes containing extraordinary vertices, as shown in
Figure 4.11, where different colors denote different levels of adaptive sub-
division. Notice how subdivision is only used in the neighborhood of ex-
traordinary vertices, whereas regular regions are directly tessellated using
bicubic B-splines.

Subdivision around extraordinary vertices reduces the area and thus the
number of evaluations needed within irregular patches. By dividing the
tess factor by two aer each subdivision level (see Section 4.4.2), we en-
force that aer

⌈
log tessfactor

⌉
subdivision levels the tess factor will be-

come .. Using adaptive subdivision allows us to reduce the evaluations
within irregular patches until only the corners of the patch domain need to
be evaluated. e limit surface positions and normals at domain corners
are computed with a special vertex shader that implements limit masks as
described inHalstead et al. [HKD93]. is waywe achieve exact evaluation
at all tessellation points, including regions around extraordinary vertices.

4.6.2 Semi-Sharp Creases

e generalization of Catmull-Clark surfaces to capture creases, both in-
ĕnitely sharp and semi-sharp, has proven to be extremely useful in real-
world applications such as geometricmodeling [HDD∗94], feature ĕlmpro-
duction [DKT98], and video games [KMDZ09].

36



4.6 Examples

Previous algorithms have been capable of accurately rendering inĕnitely
sharp creases, but feature adaptive subdivision is the ĕrst that is capable of
interactively rendering semi-sharp creases. A simple example of a model
using semi-sharp creasing is shown in Figure 4.8, where different colors
denote different levels of adaptive subdivision. Note that Figure 4.8(c) uses
a fractional sharpness crease. Sharpnesses and fractional values are entirely
encoded in precomputed subdivision tables. At runtime the tables are used
to ĕll the vertex buffer with vertex positions for each adaptively subdivided
patch at each level of subdivision. ese patches are then sent to the tessel-
lation unit for evaluation.

(a) (b) (c)

Figure 4.8: All images are derived from a cube used as the base mesh. (a) no
edges tagged; (b) front and back-face edges have a sharpness of ; (c) front and
back-face edges have a fractional sharpness of .. Each color represents a dis-
tinct level of subdivision.

A more realistic example of the use of semi-sharp creases is the Garbage
Truck shown in Figure 4.9, which appeared in a recent feature ĕlm. e
Catmull-Clark base mesh consists of  patches, and  creased edges,
with sharpnesses ranging from . to ., including some fractional sharp-
nesses of . and .. Achieving the tight radii of curvature without semi-
sharp creases would signiĕcantly increase the memory footprint because
the base mesh would need to be signiĕcantly more dense in most regions.
Another example of semi-sharp creasing is the Car Body shown in Fig-
ure 4.1. Semi-sharp creases were particularly helpful near the boundary
of the hood to achieve a tight radius of curvature there.

37



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

While feature adaptive subdivision handles Catmull-Clark subdivision fea-
tures generically, we present an approach in Chapter 5 that particularly fo-
cuses rendering surfaces with semi-sharp creases.

Figure 4.9: Garbage Truck with semi-sharp creases. Adaptive subdivision levels
indicated by color (right). © Disney/Pixar

4.6.3 Hierarchical Detail

Multi-resolutionmodeling has received considerable attention in the graph-
ics community, and can be traced back at least to the early work of Forsey
andBartels [FB88]. When applied to subdivision surfaces, the idea is to rep-
resent a shape using a relatively sparse base mesh that captures the coarse
features of the shape, togetherwith hierarchical edits that are applied during
subdivision to describe variation at ĕner scales. e scheme used by Ren-
derMan is typical for thesemethods [Pix05]. Each vertex generated through
subdivision is assigned a unique index. A hierarchical edit consists of such
an index together with a vector displacement. When the vertex with that
index is created during subdivision, its position is offset by the vector dis-
placement prior to subsequent subdivision. An example of this process is
shown in Figure 4.10(b), where the base mesh captures the overall shape of
the terrain, while the hierarchical edits are used to describe the footprints
which occur at much ĕner scales.

In our method, adaptive subdivision is used in regions that are affected by
hierarchical edits, and are encoded into subdivision tables as a precomputa-

38



4.7 Adaptive Level of Detail

tion on the CPU. During runtime, aer each subdivision level, hierarchical
edits applicable to that level are used to reposition vertices, then subdivision
proceeds to ĕner levels.

Similar to hierarchical edits, T-splines [SCF∗04] enable the representation
of multiple resolutions of mesh data within a compact framework. While
we have not validated our algorithm on T-spline meshes, we expect the fea-
ture adaptive principles underlying our work to be complementary to the
T-spline paradigm.

4.6.4 Displacement Mapping

Displacement mapping involves offsetting a surface point in the normal di-
rection by a scalar value stored in a texture map. In the context of hardware
tessellation, it is crucial that both the position and normal of a surface on
shared patch boundaries are bitwise identical; otherwise, cracks may ap-
pear in surface. Fortunately, a variant of our algorithm (see Section 4.5)
guarantees this, as illustrated in Figure 4.10(a). Here we have used the tra-
ditional combination of a scalar displacement texture and a object space
normal map. In Chapter 8 we present a more elaborate displacement map-
ping technique that gets along without a normal map.

4.7 Adaptive Level of Detail

eĘexibility of our algorithmic framework can be used in a variety of ways
to achieve adaptive level-of-detail (LOD) control. ere are two indepen-
dent factors that can be used for LOD control for our rendering technique:
tess factor assignment and the depth at which subdivision is terminated.
We examine each of these separately, then make speciĕc recommendations
for two important applications; namely, the rendering of characters and
terrain. Please note that we also present a level-of-detail technique in the
context of displacement mapping (see Chapter 8) that builds on the ideas
shown here.

39



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

(a) (b)

Figure 4.10: Displacements (a) and hierarchical edits (b). Subdivision levels are
visualized by distinct colors. © Disney/Pixar

Tess factor assignment:
An important beneĕt of using hardware tessellation is the ability to vary the
tessellation density of an object at runtime. is means that both the cost
of over-tessellation and the poor image quality of under-tessellation can be
avoided.

e hardware tessellator varies tessellation density of patches at runtime
through user provided edge and interior tess factors. Tess factors are as-
signed in the hull shader constant function that is executed once for each
patch. Each instance of this function must compute all the tess factors
for the edges and interior of the patch. Instances corresponding to adja-
cent patches must provide the same tess factor for a shared edge to prevent
cracks.

Since we have eliminated T-junctions from the patch structure of a model,
we are free to assign these tess factors arbitrarily to shared patch edges (see
Section 4.4). Tess factor assignment can either be done locally on a per edge
basis requiring tess factor computations in the hull shader, or globally for an
entiremesh. Local tess factors can be assigned according to some local edge

40



4.7 Adaptive Level of Detail

based metric. Doing this based on screen space length, which approaches
zero near silhouettes, may cause artifacts. More sophisticated approaches
could avoid this, but at higher cost. For our applications we have achieved
good results by simply using the viewing distance to edge midpoints. Al-
ternatively, we can assign tess factors globally so that all patch edges of an
object get the same value. e global tess factor could for example, be com-
puted based on the distance from the camera to the centroid of the object.
Such a global tess factor assignment would result in patches from higher
levels of subdivision to appear more densely tessellated than those from
lower subdivision levels. To avoid this, we assign the global tess factor to
the zeroth subdivision level, halving it for each level of subdivision, result-
ing in a more uniform tessellation density. is strategy has proven to be
effective for objects with small spatial extent, such as characters.

Adaptive subdivision level:
Additional LOD management is obtained by terminating feature adaptive
subdivision aer an adaptively determinedmaximum level. is level could
be based on an object's camera distance, similar to global assignment of a
tess factor. is approachmay result in irregular patches having a tess factor
greater than ., which means that a surface approximation such as Loop et
al. [LSNC09] would be required. Nevertheless, this might be reasonable for
models containing very sharp creases. Such a scheme would be particularly
effective for objects with a large spatial extent, such as terrains.

Given these two factors for adaptive LOD control, we recommend the fol-
lowing alternatives for characters and terrains, respectively.

Adaptive global tess factors with adaptive subdivision level:
Aglobal view dependent tess factor is computed per object to determine the
maximum subdivision depth (i.e.,

⌈
log tessfactor

⌉
). is combination of

adaptive tess factor assignment and adaptive subdivision level is potentially
themost reasonable LOD strategy for character animation, since characters
usually have a limited spatial extent and thus additional per edge computa-
tions become unnecessary.

Adaptive local tess factors with adaptive subdivision level:
emaximum tess factor that could possibly be assigned to any edge (based

41



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

on the viewing distance) of a certain object is computed taking the respec-
tive bounding geometry into account. Hence, the most distant point on the
bounding geometry determines the maximum subdivision level. As a re-
sult it is possible to locally assign tess factors on a per edge basis in the hull
shader. If extraordinary vertices have been isolated, then irregular patches
will never receive a tess factor greater than ..

4.8 Results

Our implementation uses DirectX 11 running under Windows 7. We used
DirectCompute forGPUsubdivision and theDirect3D11 graphics pipeline
to access the hardware tessellator. All GPU code was written in HLSL, and
all timing measurements were made on an NVIDIA GeForce GTX 480.
Timings are provided in milliseconds and account for all runtime overhead
except for display of the GUI widgets, text rendering, etc..

4.8.1 Comparison to Global Mesh Reönement

Subdivision Level 0 1 2 3 4
Feature Adaptive Patching 0.10 0.20 0.34 0.81 2.30

Shiue Subdivision 0.62 7.26 13.97 21.42 34.93
Global Table Subdivision 0.06 0.18 0.79 3.07 12.05
Draw Time (Table Subd.) 0.04 0.06 0.37 1.45 5.78

Table 4.1: Timing using the Big Guy model for our scheme (feature adaptive
patching) compared against our global table driven subdivisionmethod and the
previously published GPU subdivision algorithm by Shiue et al. [SJP05]. Note
that all timings include önal rendering, while we additionally break out draw
time for our global subdivision scheme.

In this section we show that our patch-based feature adaptive approach is
faster than repeated global reĕnement of amesh on theGPU.is is a direct

42



4.8 Results

result of the high compute to memory bandwidth ratio of modern graphics
processors; that is, fetching a value from memory takes as much time as a
large number of Ęoating point operations. is number is increasing with
each new GPU generation. Recall that a global reĕnement approach must
stream old and newmesh vertices to and from off-chip GPUmemory. is
requires a small amount of computation, but a large amount ofmemory I/O.
By utilizing the hardware tessellator to process the large number of regular
patches that arise in Catmull-Clark subdivision, we avoid this bottleneck
since patches are evaluated and rendered on-chip requiring considerable
computation but little memory I/O.

To demonstrate this point, we compare our scheme to two global reĕne-
ment algorithms implemented on theGPU.eĕrst utilized our table driven
subdivision approach (see Section 4.2) to globally reĕne a mesh for each
subdivision level. e second algorithm is a modern GPU implementation
of the subdivision kernel proposed by Shiue et al. [SJP05]. Shiue's algo-
rithm requires extraordinary vertices to be isolated (that is, no edge can be
adjacent to two extraordinary vertices). We achieve this by statically pre-
subdividing the mesh on the CPU. Note that neither our feature adaptive
patching scheme nor our table driven subdivision has this limitation.

As shown in Table 4.1 our feature adaptive patching scheme outperforms
global subdivision for all but the ĕrst subdivision levels. is can be eas-
ily explained because for the ĕrst subdivision levels little reĕnement is re-
quired; while our feature adaptive patching must always setup patches even
if evaluations are only done at patch corners. However, beyond the ĕrst sub-
division levels feature adaptive patching pays off since hardware tessellation
requires less memory I/O. As the subdivision level increases this difference
quickly becomes large. For subdivisions levels beyond level 4 we cannot do
the comparison since global subdivision runs out of memory.

Furthermore, our feature adaptive patching scheme is faster than Shiue's
algorithm for all subdivision levels and our table driven subdivision out-
performs Shiue's algorithm in all cases (see Table 4.1). Our implemen-
tation of Shiue differs slightly from the original approach in that we use
the compute shader in order to launch threads instead of the pixel shader.

43



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

is change was made to provide more freedom to optimize thread alloca-
tion in order to achieve best performance for Shiue's algorithm on modern
GPUs. Due to its fundamental design their depth-ĕrst approach requires
both a signiĕcant number of compute kernel invocations and draw calls.
Redundant computations within the subdivision kernel and between dis-
tinct kernel calls further harm performance. is may have been a reason-
able designwhen launching blocks of threads had to be done by the graphics
pipeline using pixel shaders. In contrast to this depth-ĕrst approach, to-
day's more generally programmable GPUs prefer breadth-ĕrst algorithms
such as our table driven subdivision. Nevertheless, all GPU subdivision al-
gorithms contain a signiĕcant amount of memory I/O due to their iterative
nature and independent rendering of the resulting triangles. Our patch-
ing scheme, however, utilizes the tessellation unit which minimizes mem-
ory I/O; once patches are set up, patch evaluations and ĕnal rendering is
done on-chip without additional memory transfer. is behavior is clearly
demonstrated in Table 4.1 where the draw time alone for global subdivi-
sion is already larger than our entire feature adaptive subdivision scheme
(including all kernel launches and patch renderings) beyond subdivision
level 2.

4.8.2 Comparison to Direct Evaluation and Approximate Patching
Algorithms

We have shown in the previous section that using hardware tessellation al-
lows rendering with a minimum of memory I/O, making it faster than it-
erative mesh reĕnement. We now compare our feature adaptive algorithm
and its watertight variant (see Section 4.5) against other patching schemes.
erefore, we consider Stam's direct evaluation algorithm [Sta98] and the
approximate Gregory patching scheme proposed by Loop et al. [LSNC09].
In the following comparison we ĕrst perform one level of global subdivi-
sion for all algorithms, since Stam evaluation requires isolated extraordi-
nary vertices (neither approximate Gregory patching nor our approach has
this limitation). We use the Big Guy andMonster Frogmodels since they do
not possess semi-sharp creases or hierarchical detail (only our approach can

44



4.8 Results

handle those features). e respective images including the patch structure
is illustrated in Figure 4.11while the timing results are shown in Figure 4.12.

Figure 4.11: Exact evaluation of subdivision surfaces using our adaptive scheme
applied on the Big Guy (left) andMonster Frog (right) model. Respective timings
are shown in Figure 4.12.

Even though our algorithm is considerably more general than Stam's (be-
cause it can handle semi-sharp creases and hierarchical edits), our method
runs faster on all tess factors. Moreover, the performance gap becomes
larger as the tess factor increases due to the relatively expensive domain
shader evaluation used in Stam's algorithm. Also note that the difference
is larger on the Monster Frog model than for the Big Guy model. is is
reasonable, since the Monster Frog contains a higher percentage of irregu-
lar patches than the Big Guy ( of  and  of  irregular patches,
respectively).

Compared to Gregory patches, our method is exact (at evaluation points)
rather than approximating, more general, and is marginally faster when us-
ing small tess factors (due to the more expensive control point computa-
tion of the Gregory scheme). For higher tess factors our method becomes
slightly slower, but still achieves a comparable performance.

Our watertight evaluation method produces bit-wise identical results, but

45



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

0

20

40

60

80

100

120

1 2 4 8 16 32 64

R
e

n
d

e
rt

im
e

 (
m

s)
  

  
B

ig
 G

u
y

 

Tessellation Factors 

Ours

Gregory

Stam

Ours (WT)

0

20

40

60

80

100

120

1 2 4 8 16 32 64

R
e

n
d

e
rt

im
e

 (
m

s)
  

  
M

o
n

st
e

r 
F
ro

g
 

Tessellation Factors 

Ours

Gregory

Stam

Ours (WT)

Figure 4.12: Comparison of our method (w/ and w/o watertightness) against
Stam evaluation (both exact) and the approximate Gregory scheme using differ-
ent tess factors applied to the Big Guy (top) andMonster Frog (bottom) models.

at the cost of reduced performance caused by the required shader restruc-
turing. e difference between normal and watertight rendering is espe-
cially noticeable when using smaller tess factors. is is due to the diver-
gent code of the domain shader, and becomes less signiĕcant as the tess
factor increases. Note that neither Gregory patches nor Stam evaluation
can guarantee watertightness.

4.8.3 Semi-Sharp Creases and Hierarchical Edits

Models containing semi-sharp creases cannot be handled by previous algo-
rithms. Performance measurements of our algorithm for such models (the
Car Body and the Garbage Truck) are given in Table 4.2. Note that even
for high tess factors real-time frame rates are achieved. Also note that em-

46



4.8 Results

ploying the tessellator allows us to generate and render nearly one billion
triangles per second on our test hardware.

Car Body Garbage Truck
TF Tris Time (ms) Tris Time (ms)
1 109,251 1.58 644,286 10.54
2 136,839 1.60 655,138 10.57
4 216,529 1.68 723,070 10.59
8 883,713 1.92 1,183,478 10.90
16 2,725,881 4.24 3,786,922 12.90
32 9,440,953 10.51 11,735,594 23.82
64 34,014,791 39.40 40,584,514 54.36

Table 4.2: Performance of our method on the Car Body and Garbage Truckmod-
els as a function of tess factor (TF).

Our method is also the ĕrst capable of interactively rendering models con-
taining hierarchical detail. An example is shown in Figure 4.10(b) which
depicts a sandy terrain consisting of very few faces in the basemesh (a ×
grid), together with ĕne scale footprints that aremodeled using hierarchical
detail. Note that footprints can be easily animated since hierarchical detail
can be updated at runtime.

4.8.4 Memory Requirements

As mentioned in Section 4.3, memory on the GPU needs to be allocated
to store subdivision tables for each feature adaptive patch, and the vertex
buffer needs to be large enough to store patch vertices at all levels of sub-
division. e exact memory requirements for various levels of subdivision
for particular models are shown in Figure 4.13. Modern GPUs are typi-
cally equipped with a gigabyte or more of buffer memory, so the memory
requirements of our algorithm make it possible to simultaneously handle
many such models.

47



CHAPTER 4 Feature Adaptive GPU Rendering of Subdivision Surfaces

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6

M
em

or
y 

(M
B)

Subdivision Level

Car Body

Garbage Truck

Big Guy

Monster Frog

Figure 4.13:Memory requirements to store vertexbuffers and subdivision tables
as a function of the maximum subdivision level.

4.9 Conclusion

We have presented a novel method of GPU based rendering of arbitrary
Catmull-Clark surfaces. In contrast to previous algorithms, our method is
exact and implements the full RenderMan [Pix05] speciĕcation of Catmull-
Clark surfaces, including arbitrary basemesh topology, semi-sharp creases,
and hierarchically deĕned detail. We also presented a variant of the al-
gorithm that produces watertight positions and normals, allowing for the
crack-free rendering of displaced surfaces. We demonstrated the method
on feature ĕlm quality models, and showed that even for such complexity
we are able to generate nearly one billion triangles per second.

We would also like to point out that our approach has been released as an
open source project that ismaintained by Pixar [Pix12]. eproject is being
used as a plugin for Autodesk Maya [Auta] and Autodesk Mudbox [Autb].

ough we were inspired by feature ĕlm applications, our algorithm can be
also used to increase the realism and cinemagraphic experience in the next
generation of games.

48



CHAPTER 5

Efficient Evaluation of Semi-Sharp
Creases

5.1 Introduction and Algorithm Overview

In Chapter 4 we have proposed an approach for rendering Catmull-Clark
subdivision surfaces [CC78] using feature adaptive subdivision [NLMD12].
e presented approach is fully compliant to the RenderMan [Pix05] spec-
iĕcation since it can resolve all features such as semi-sharp creases or hi-
erarchical edits by adaptive subdivision. While this makes feature adaptive
subdivision a general approach, rendering meshes with semi-sharp creases
of higher sharpness is relatively slow. is is due to the exponential growth
of patches being processed at edges with semi-sharp crease tags (see Sec-
tion 4.2). However, semi-sharp creases as speciĕed in RenderMan and pro-
posed by DeRose et al. [DKT98] are an important and widely used exten-
sion of Catmull-Clark subdivision surface that allow realistic edges to be
deĕned while keeping memory footprint small.

In order to speed up rendering of objects containing creased edges, our
goal is to reduce memory I/O; i.e., to reduce the number of patches that are
being created by adaptive subdivision. e key idea of our method is to an-
alyze the polynomial structure of semi-sharp creases and directly evaluate
these rather than applying iterative subdivision. We present a direct evalua-
tion scheme for regular patches and another for irregular patches that is in-
spired by Stam evaluation [Sta98]. In our GPU implementation we directly
evaluate regular patches with sharpness tags and we perform adaptive sub-
division around extraordinary vertices. is turned out to be faster than
performing a Stam-like evaluation for irregular patches. However, com-

49



CHAPTER 5 Efficient Evaluation of Semi-Sharp Creases

pared to previous feature adaptive subdivision, the number of patches be-
ing created by subdivision is only linear with respect to sharpness tags and
tessellation density (instead of exponential). is results in a considerable
performance gain and reducesmemory consumption signiĕcantly (see Fig-
ure 5.3). In the end, rendering speed becomes independent of sharpness
tags and makes the usage of high-order sharpness features in real-time ap-
plications feasible.

To sum up, the contributions of our approach are:

• Efficient direct evaluation of regular patches with a single semi-sharp
crease (see Section 5.2)

• Direct evaluation scheme for arbitary patch setups; with features such
as extraordinary vertices and/or bent creases (see Section 5.3).

• Rapid rendering on the GPU using hardware tessellation (see Sec-
tion 5.4).

5.2 Evaluation of Semi-Sharp Creases in
Regular Patches

In this section we assume that a patch contains at most a single semi-sharp
crease (or two creases at opposite sides of a 4-sided patch) and does not
contain any extraordinary vertices. is is achieved by adaptive subdivi-
sion following Nießner et al. [NLMD12] (see Section 5.4). We evaluate
bicubic B-spline patches using their tensor product form with parameters
u, v. at allows us to simplify the problem to the curve case with a sin-
gle semi-sharp crease tag. Our goal is to transform the control points of
a cubic B-spline curve in a way such that the transformation exactly corre-
sponds to the semi-sharp crease rules of Catmull-Clark subdivision deĕned
by DeRose et al. [DKT98]. In addition, the control points obtained by the
transformation must again deĕne a valid cubic B-spline curve. In the fol-
lowing we use respective reĕnement matrices to deĕne the transform.

50



5.2 Evaluation of Semi-Sharp Creases in Regular Patches

A uniform cubic B-spline curve can be reĕned applying the reĕnementma-
trix R (or Rp at a curve boundary):

R = 



   
   
   
   
   

 and Rp =




   
   
   
   
   

 .

us, subdividing the initial curve control points P⃗ = (P, P,P,P)T can
be represented as P⃗′ = RP⃗. ematricesR andRp correspond to the smooth
and sharp Catmull-Clark subdivision rules, respectively.

We now split the cubic B-spline curve f(t) = N(t)P⃗ (with N(t) a  × 
matrix containing the cubic B-spline basis functions and P⃗ deĕning the B-
spline control points) into two curve segments: the inĕnitely sharp segment
f∞(t) deĕned for  ≤ t ≤  − −s and the transition segment fs(t) to the
crease deĕned for − −s < t ≤ .

f(t) =

{
f∞(t) = N(t)P⃗∞ for  ≤ t ≤ − −s

fs(t) = N(t)P⃗s for − −s < t ≤ 

In order to directly evaluate the curve, we need to obtain the control points
for both curve segments P⃗∞ and P⃗s. e Catmull-Clark subdivision rules
for boundaries can be transferred to the curve case using the transformation
matrix

M∞ =


   
   
   
 −  

 .

e control points of the inĕnitely sharp section of the curve are then given
by P⃗∞ = M∞P⃗. For fs(t) we use modiĕed ×  reĕnement matrices R and

51



CHAPTER 5 Efficient Evaluation of Semi-Sharp Creases

Rp derived from R and Rp:

R = 



   
   
   
   

 and Rp =




   
   
   
   

 .

ese reduced matrices still subdivide the curve, however, the set of result-
ing control points deĕnes only a part of the curve. is corresponds to fs(t)
which is only valid for t ∈]− −s, ].

e control points required to deĕne fs(t) can be obtained by Rs
pP⃗. How-

ever, this results in a wrong parameterization since the curve's velocity is
changed. us, we back-transform these interim control points using R−

in order to maintain the original parameterization:

P⃗s = (R−)sRs
pP⃗

e resulting control points P⃗s deĕne an extrapolated curve, however, with
t ∈] − −s, ] so that the curve exactly matches the desired shape with
the parameterization corresponding to the initial curve. Examining the
eigenstructures of R and Rp (both non-defective) allows us to deĕneMs =

(R−)sRs
p and diagonalize:

Rs
p = VRpΛs

Rp
V−
Rp

and (R−)s = V−
R Λ−s

R VR.

us, we are able to simplifyMs (with σ = s):

Ms =
− σ
 σ


 σ
−σ σ −  σ +  − σ +  σ −   σ −  σ + 
  σ+ σ+

−σ  σ −  −  σ
 σ +   σ+ σ−

−σ σ + 
 − σ σ −   σ+ σ+

−σ



52



5.2 Evaluation of Semi-Sharp Creases in Regular Patches

Further, f(t) is given by:

f(t) =

{
N(t)M∞P⃗ for  ≤ t ≤ − −s

N(t)MsP⃗ for − −s < t ≤ 

Two such curves with sharpness  and  are shown in Figure 5.1. In the
end, we can directly evaluate regular patcheswith a single semi-sharp crease
using f(t) to construct the tensor product (fi(u) refers to the evaluation of
one row of the ×  control points of a bicubic patch):

S(u, v) = (f(u), f(u), f(u), f(u))NT(v)

0 11- 2-1

s = 0

s = 1

s = 2
s = 1.7

1- 2-2

Figure 5.1: Curve segments generated for a particular control polygon; the
sharpness tags shown are s = , , ., . For s =  the curve is a single seg-
ment deöned on [, ]; for s = ,  the curves have two segments deöned on
[, − −s] and [− −s, ]; for s = . the curve has three segments deöned on
[, − −⌊s⌋], [− −⌊s⌋, − −⌈s⌉], and [− −⌈s⌉, ].

53



CHAPTER 5 Efficient Evaluation of Semi-Sharp Creases

5.2.1 Fractional Sharpness

DeRose et al. [DKT98] also specify fractional sharpness as a linear blend
between integer sharpness levels (see Section 1.3). Hence, it is required
to compute a separateM⌊s⌋ andM⌈s⌉ and apply the linear blend manually.
is yields three curve segments, an inĕnitely sharp part, a linear blend
between sharp and the smaller sharpness factor, and a linear blend between
the smaller and higher sharpness factor; see Figure 5.1. ese segments are
deĕned by the respective control points P⃗∞, P⃗∞̂ and P⃗ŝ:

P⃗∞ = M∞P⃗

P⃗∞̂ = (− (s− ⌊s⌋))(R−)⌊s⌋R⌊s⌋
p P⃗+ (s− ⌊s⌋)M∞P⃗

P⃗ŝ = (− (s− ⌊s⌋))(R−)⌊s⌋R⌊s⌋
p P⃗+ (s− ⌊s⌋)(R−)⌈s⌉R⌈s⌉

p P⃗

Multiple transform operations can be avoided by directly computing the
required transformation matricesM∞̂ andMŝ:

M∞̂ = (− (s− ⌊s⌋))M⌊s⌋ + (s− ⌊s⌋)M∞

Mŝ = (− (s− ⌊s⌋))M⌊s⌋ + (s− ⌊s⌋)M⌈s⌉

Note that these transformationmatrices correspond to the semi-sharp sub-
division rules with fractional sharpness tags. Now the initial control points
are transformed and the resulting function f(t) is given by the three curve
segments:

f(t) =


f∞(t) = N(t)M∞P⃗ for  ≤ t ≤ − −⌊s⌋

f∞̂(t) = N(t)M∞̂P⃗ for − −⌊s⌋ < t ≤ − −⌈s⌉

f̂s(t) = N(t)MŝP⃗ for − −⌈s⌉ < t ≤ 

Figure 5.1 shows an example curve with a fractional sharpness of .. e
computation of the tensor product surface S(u, v) is the same as for integer
sharpness.

54



5.3 Evaluation of Semi-Sharp Creases in Irregular Patches

5.3 Evaluation of Semi-Sharp Creases in
Irregular Patches

Section 5.2 handles regular patches with at most one semi-sharp crease.
Patches with extraordinary vertices or bent creases have been omitted so
far. At a bent crease (i.e., a setup where two neighboring edges incident to
one vertex have crease tags) an adjacent patch has at least two creased edges
that cannot be resolved by subdivision. In this section we deal with both of
these setups by extending Stam's direct evaluation method [Sta98]. at is
to encode the semi-sharp subdivision rules into subdivision matrices, ana-
lyze their eigenstructure and directly obtain the control points of a regular
subpatch that corresponds to the original patch evaluation parameters u
and v.

e key idea is to subdivide irregular patches and analyze the obtained
patch structure. Each set of obtained control points for a subdivision level
i has three regular patches Ωi

,, and one irregular patch (see Figure 5.2).
While evaluation points within a regular patch can be evaluated directly,
irregular patches require further reĕnement. us, for an arbitrary evalua-
tion point on an irregular patch (deĕned by the control pointsC) at domain
parameters u, v, it is possible to determine a regular bicubic B-spline sub-
patch that can be directly evaluated; that is aer n = ⌊min (log u, log v)⌋
subdivision steps.

In order to obtain the child control points aer n subdivision steps, we use
the Catmull-Clark subdivision matrices A and A (see [Sta98] for deĕni-
tion). Let C be the initial 1-ring vertices of an irregular patch, then mul-
tiplication with A provides the control points C that deĕne all four child
patches: C = AC. In contrast, multiplying A with C will result in a set
of control points that deĕnes only the child patch next to the extraordinary
vertex (i.e., omitting patches Ω

,,): C = AC. Note that A has dimension
(N + ) × (N + ) (where N is the valence of the extraordinary vertex)
and the extended subdivisionmatrixA has dimension (N+)×(N+).
e desired control points Cn that deĕne the regular patch Ωn

k can be ob-
tained by: Cn = AAn−C. Stam additionally deĕnes a  × (N + )

55



CHAPTER 5 Efficient Evaluation of Semi-Sharp Creases

Ω1
1

Ω2
1Ω3

1

Ω1
2

Ω2
2Ω3

2

Ω13
Ω23Ω33

u

v

Figure 5.2: Recursive partitioning of the domain of a patch with one extraordi-
nary vertex at the bottom left. All Ωi

k are regular patches that can be directly
evaluated.

picking matrix Pk that selects the  control points Bk,n from Cn that deĕne
Ωn

k : Bk,n = PkCn. Basically, aer some parameterization corrections these
control points Bk,n can be used for direct evaluation (details see [Sta98]).

Since the matrices A and A do not take care for semi-sharp creases, we in-
troduce additional subdivision matrices Sq. Each Sq corresponds to one
speciĕc crease setup q around an extraordinary vertex. In contrast to A
and A, Sq incorporates the sharp subdivision rules (see Section 1.3). In the
following we assume a ĕxed setup q with the corresponding subdivision
matrix S and the extended subdivision matrix S (analogous to A).

Hence, for an irregular patch containing at least one semi-sharp crease, the
child control points Cn are given by:

Cn =

{
AAn−−sSsC for s ≤ n− , (1)
SSn−C else. (2)

In case () the resulting control points Cn deĕne a regular bicubic B-spline
patch that can be evaluated directly. e obtained patch of case () contains
a single edgewith a semi-sharp creasewhereweuse the evaluation approach
as shown in Section 5.2.

56



5.4 GPU Implementation using Hardware Tessellation

A special case exists if the patch is evaluated at the extraordinary vertex;
i.e., u = v = . In that case we compute the control points Cs = SsC
that deĕne a patch without crease tags (in fact we only require the control
points that belong to the 1-ring of the extraordinary point). We then apply
the Catmull-Clark limit stencils corresponding to the eigenvectors of the
subdivision matrix A (see [HKD93], [LS08])).

Similar to Stam, we perform an eigenvalue decomposition of A and S in
order to determine Cn:

A = VAΛAV−
A and S = VSΛSV−

S

us, Cn can be computed efficiently:

Cn =

{
AVAΛn−−s

A V−
A VSΛs

SV−
S C for s ≤ n− , (1)

SVSΛn−
S V−

S C else. (2)

Note that for a ĕxed sharpness s there are
∑N

i=
(N
i
)
different matrices Sq.

If we allow edges with different sharpness tags on a single extraordinary
vertex there are substantially more possible matrices Sq.

While we consider this direct evaluation method for irregular patches with
creases an important addition to theory and interesting for CPU appli-
cations, the mentioned combinatorical issues pose a severe limitation on
GPUs. Hence, for a GPU application we suggest a combination of iterative
reĕnement around extraordinary vertices and direct evaluation for regular
patches (see Section 5.4).

5.4 GPU Implementation using Hardware
Tessellation

For efficient rendering on the GPU we use hardware tessellation due to
its memory-I/O-friendly design (see Section 1.4.2). We perform perform
adaptive subdivision iteratively around extraordinary vertices (see Chap-

57



CHAPTER 5 Efficient Evaluation of Semi-Sharp Creases

ter 4) and then directly evaluate the resulting bicubic B-spline patches using
hardware tessellation. is turned out to be faster than the proposed alter-
native in Section 5.3; already standard Stam subdivision was signiĕcantly
slower (see Figure 4.12). e reason for the efficiency of feature adaptive
subdivision is that the number of adaptively created patches around ex-
traordinary vertices is only linear with respect to the number of subdivision
steps k (N · k where N is the vertex valence). In Chapter 4 we use adaptive
subdivision around features such as semi-sharp creases, however, this cre-
ates an exponential amount of subdivided patches (k) aer k subdivision
steps.

We now replace adaptive subdivision for creases in regular regions by direct
evaluation as shown in Section 5.2. Adaptive subdivision is still applied at
extraordinary vertices and semi-sharp creases with varying sharpness. It
is also used to enforce the condition that regular patches must not contain
more than one semi-sharp crease tag. e beneĕt of this is that the number
of child patches created by adaptive subdivision becomes linear instead of
exponential with respect to the sharpness tag.

eGPU implementation for regular patches with one edge tagged sharp is
straight forward. In a preprocess we rotate these patches so that the semi-
sharp crease tag is always at the same side. Additionally, we store the sharp-
ness s for each patch in a buffer. is allows us to render patches with dis-
tinct sharpness tags within the same render pass. In the hull shader we
obtain the sharpness according to the patch ID and compute the respective
transformation matrix Ms. Further, the transformed control points of the
different curve segments of f(t) are computed according to M∞ and Ms,
or in the fractional case according toM∞,M∞̂ andMŝ. e two resulting
sets (three with fractional sharpness tags) of control points are then passed
to the domain shader, where we determine which set of control points is
required in order to evaluate the sub-patch according to the domain pa-
rameters u, v.

58



5.5 Results

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

R
e

n
d

e
rt

im
e

 (
m

s)
 

Edge Sharpness 

Performance 

Ours Frac Ours Int Previous

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9

M
e

m
o

ry
 (

M
B

) 

Edge Sharpness 

Memory Consumption 

Ours Previous

Figure 5.3: Performance (rendered with hardware tessellation at a tess factor of
) and memory consumption for the Sportscar model (see Figure 5.4); our di-
rect evaluation approach (fractional and integer sharpness) and standard feature
adaptive subdivision [NLMD12].

5.5 Results

Our implementation usesDirectX 11 running on anNVIDIAGeForceGTX
480. Figure 5.3 shows performance and memory consumption of our di-
rect evaluationmethod (fractional and integer sharpness variant) and stan-
dard feature adaptive subdivision [NLMD12] as shown in Chapter 4 for the
Sportscar model (see Figure 5.4) with different sharpness tags. Rendering
is performed using a tess factor of . Performance without any sharpness is
the same for allmethods since the samenumber of patches are being created
by adaptive subdivision. Having set sharpness tags to  or  standard feature
adaptive subdivision is marginally faster due to lower patch setup costs. At
a sharpness above  our direct evaluation algorithm is faster. With higher
sharpness tags, standard feature adaptive subdivision becomes signiĕcantly
slower (note the exponential behavior). In contrast, render time using our
direct evaluation approach remains almost constant. Render time using
this method increases slightly since we still perform adaptive subdivision at
extraordinary vertices. e same relation between our direct evaluation ap-
proach and standard feature adaptive subdivision can be observed in terms
of memory consumption, however, the memory consumption of our direct
evaluation approach is always less. A visualization of the different subdivi-

59



CHAPTER 5 Efficient Evaluation of Semi-Sharp Creases

sion levels is provided by Figure 5.4 (le ours; right standard feature adap-
tive subdivision). Also note that our direct evaluation approach allows the
modiĕcation of sharpness tags at runtime.

Figure 5.4: Sportscarmodel consistingof patcheswith  semi-sharp crease
tags (sharpness of ) rendered with standard feature adaptive subdivision (left)
and our direct evaluation approach (right). Subdivision levels are indicated by
different colors.

5.6 Conclusion

We have presented a novel and GPU-friendly method that allows efficient
evaluation of semi-sharp creases as deĕned by the RenderMan speciĕca-
tion [Pix05]. Our algorithm signiĕcantly improves upon standard feature
adaptive subdivision as shown in Chapter 4. Memory footprint is reduced
froman exponential to a linear amountwith respect to the subdivision level.
at keeps render time low andmemory I/O small, and thus allows dealing
with high-order sharpness tags in real-time applications. While we have
demonstrated how to integrate direct evaluation of semi-sharp creases for
hardware tessellation, ourmethod can be also used by offline renderers. For
instance, subdivision surfaces with semi-sharp crease tags can be efficiently
ray-traced without costly iterative subdivision.

60



PART II

High-frequency Detail on
Subdivision Surfaces





CHAPTER 6

Introduction

Displacement mapping has been used as a means of efficiently representing
and animating 3D objects with high-frequency surface detail. Where tex-
ture mapping assigns color to surface points at u, v parameter values, dis-
placement mapping assigns vector offsets. e advantages of this approach
are two-fold. First, only the vertices of a coarse (low-frequency) base mesh
need to be updated each frame to animate the model. Second, since the
only connectivity data needed is for the coarse base mesh, signiĕcantly less
memory is required to store the equivalent highly detailed mesh. Further
memory reductions are realized by storing scalar, rather than vector off-
sets. e displacement is then achieved by offsetting a base surface point in
its normal direction according to the value stored in a scalar displacement
map. While scalar displacement mapping is not as Ęexible from a model-
ing standpoint as vector displacementmapping, it signiĕcantly reduces data
throughput in the graphics pipeline, as well as the overall storage space and
transmission requirements for digital models.

Hardware tessellation is ideally suited to displacement mapping. Higher
order parametric patches provide a base surface that is evaluated on-chip
to form a dense triangle mesh and immediately rasterized with low mem-
ory I/O. Displacing triangle vertices in their normal direction according to
a value stored in texture memory has very little performance impact. How-
ever, while conceptually simple and highly efficient, hardware displacement
mapping has not been widely adopted in real-time applications due to sev-
eral subtle artifacts.

Displacement Mapping Artifacts:
Meshes are typically endowed with a parameterization in the form of a 2D
texture atlas. Conceptually, a few seams are introduced on edges to unfold

63



CHAPTER 6 Introduction

the surface into the plane, creating a mapping (an atlas) from the plane to
the surface. Points on seams map to more than one point in texture space
resulting in inconsistent values; bilinear texture ĕltering exacerbates this
problem. For displacement mapping, this can lead to unacceptable cracks
in a rendered surface.

e normal of the base surface serves as the direction of displacement.
However, this base surface normal is, in general, not the normal of the re-
sulting displaced surface, thus complicating accurate shading. To overcome
this problem, normal mapping has been used to assign more plausible sur-
face normals over displaced vertices to reduce shading artifacts. To allow
the base surface to be deformed, tangent space normal mapping is used,
where the xyz coordinates of the normal relative to a tangent frame are
stored. e computation of tangent frames is costly and technically chal-
lenging since these must be globally consistent across mesh edges. While
the resulting shading is oen plausible, the deformed normal ĕeld does not
correspond to the displaced surface; hence it is not accurate. Furthermore,
re-computation of normal maps on-the-Ęy is necessary at displacement au-
thoring time to give instant feedback. Finally, normal map textures add
signiĕcantly to the storage and data throughput costs of models.

Hardware tessellation is based on the idea of dynamic re-tessellation of
patches (see Section 1.4.2). at is, the underlying sampling pattern of
patch vertices should be updated every frame to keep the resulting triangle
sizes just right; not too small or rasterization becomes inefficient, and not
too big so that faceting and interpolation artifacts are kept to a minimum.
However, changing this sampling pattern creates swimming artifacts in the
displaced surface; the surface appears to Ęuctuate wildly as the sampling
pattern changes. is artifact is caused by under-sampling the displace-
ment map.

In Chapter 8 we present an approach for rendering high-frequency detail
while avoiding typical artifacts [NL13]. erefore, we add an analytic and
dynamic displacement function on top of a Catmull-Clark subdivision sur-
face that is rendered by hardware tessellation using our approach presented
in Chapter 4.

64



CHAPTER 7

Previous Work

Texturing:
Parameterizing polygon meshes is a well-known issue in computer graph-
ics. Texture atlases are widely used, however, providing consistent values
across chart boundaries is challenging ([SWG∗03], [GP09]). e resulting
minor color errors are oen tolerable in the context of texture mapping; the
resulting cracks in the context of displacement mapping are not. Purnomo
et al. [PCK04] address these color errors by ĕnding quadrilateral regions
that are aligned in texture space. ey compute boundary overlap to obtain
seamless texturing, and they propose several strategies to access texture en-
tries. Our texturing approach of Section 8.2 is similar, but an important
difference is that a power-of-two size constraint for tile edges is enforced.
Ours is on the interior of tiles (excluding overlap); theirs is on the entire
tile (including overlap). While their design choice enables perfect packing
(i.e., no wasted space), ours allows for ideal mip pyramids; at a cost of some
unused texture space.

Ray et al. [RNLL10] introduce Invisible Seams, a method for providing con-
sistent texture accesses and mip mapping using a traditional texture atlas
approach. We do something similar, but avoid the use of a global param-
eterization (uv atlas) and do not require storage for texture coordinates.
Our (virtual) texture coordinates must align with the parameterization that
comes from the underlying Catmull-Clark base surface in order to leverage
parametric continuity among patches to achieve a smooth displaced sur-
face; this is straightforward using a tile-based approach.

Rather than redundantly storing overlaps, Burley and Lacewell [BL08] de-
veloped Ptex for offline rendering, and use adjacency pointers to access
neighboring tiles. While Ptex does not pre-ĕlter tile data, we form full

65



CHAPTER 7 Previous Work

mip pyramids over tiles to accelerate level-of-detail management and avoid
under-sampling. Mesh colors [YKH10] is another per-face texturingmethod.
Instead of overlap or adjacency pointers, mesh colors stores data indices
in texture maps; consistency is achieved by index sharing. However, this
scheme requires an extra level of indirection that reduces performance.

Displacement Mapping:
Blinn [Bli78] proposed perturbing surface normals using a wrinkle func-
tion. While this mimics the shading of a high-resolution surface, the geom-
etry itself remains unchanged. Hence, Cook [Coo84] developed displace-
ment mapping in order to give objects more realistic silhouettes. e use of
scalar displacements in the context of multi-resolution modeling has been
proposed by Guskov et al. [GVSS00]. Lee et al. [LMH00] use a similar idea,
but they apply displacements on top of a Loop subdivision surface [Loo87].
Additionally, they obtain the displacement function and its derivatives via
costly iterative subdivision; our approach involves direct evaluation. Map-
ping discrete displacement values on Catmull-Clark subdivision surfaces
was proposed by Bunnell [Bun05]. is is effective in terms of storage, how-
ever, again applying iterative subdivision for displacements is costly. Our
approach presented in Chapter 8 also uses Catmull-Clark [CC78] as a base
surface, but we apply a displacement function using biquadratic B-splines
with a Doo-Sabin [DS78] subdivision structure. An overview of traditional
displacement mapping approaches on the GPU is given by Szirmay-Kalos
and Umenhoffer [SKU08]. Implementing displacement mapping in the
context of hardware tessellation is shown by Tatarchuck et al. [TBB10].
Schäfer et al. [SPM∗12] also use the tessellator to apply displacements. ey
assign vertex attributes (such as displacement values) in the domain shader
using a shared index format similar to mesh colors.

Related work with respect to subdivision surface rendering on the GPU is
depicted in Chapter 3. For rendering high-frequency surface detail we use
feature adaptive subdivision (see Chapter 4). Adaptive subdivision is per-
formed around extraordinary vertices using GPGPU compute kernels and
process the resulting bicubic patches with the hardware tessellator. is
method is exact and signiĕcantly faster than the direct evaluation approach
by Stam [Sta98].

66



CHAPTER 8

Analytic GPU Displacement Mapping
for Subdivision Surfaces

8.1 Introduction and Algorithm Overview

In this chapter we present an approach for rendering high-frequency detail
using hardware tessellation. erefore, we use a Catmull-Clark subdivision
surface as a base mesh and an analytic displacement function on top of it.

8.1.1 Solutions and Contributions

We propose solutions, in the context of displaced Catmull-Clark subdivi-
sion surfaces, to all of the artifacts mentioned in Chapter 6. Following Lee
et al. [LMH00], we write the displaced surface as

f(u, v) = s(u, v) + Ns(u, v)D(u, v), (8.1)

where s(u, v) is a base Catmull-Clark limit surface deĕned by a coarse base
mesh,Ns(u, v) is its corresponding normal ĕeld, andD(u, v) is a scalar val-
ued displacement function. We chose Catmull-Clark since it is an industry
standard, but our ideas could be extended to Loop subdivision as well; the
important property we leverage is that the base surface is everywhere C,
except at a limited number of extraordinary vertices where it is still C. Re-
quiring the base surface s(u, v) to beC ensures that its normal ĕeldNs(u, v)
will beC. Furthermore, by constructing the displacement functionD(u, v)
to be C with vanishing ĕrst derivatives at extraordinary vertices, we can
guarantee that the displaced surface f(u, v) will be C smooth everywhere.

67



CHAPTER 8 Analytic GPU Displacement Mapping for Subdivision Surfaces

Our displacement function D(u, v) is a scalar valued biquadratic B-spline
with a Doo-Sabin subdivision surface structure. erefore, the discrete val-
ues found in our displacement maps are the coefficients of this surface.
Our motivation in making this choice was to minimize the cost of (per-
pixel) evaluation while also providing a C smooth displacement function;
biquadratic splines are optimal for this.

In order to deal with the problem of texture seam misalignment, we devise
a tile-based texture format, similar to Ptex [BL08], that corresponds to the
quad faces of the base mesh (possibly aer one level of local subdivision).
Unlike Ptex, our format is speciĕcally designed for the GPU, and we elimi-
nate the neighbor face pointers that hampers its data parallel implementa-
tion. We also deal gracefully with non-uniform tile sizes so that surface de-
tail is appropriately distributed over a surface. is includes down-sampled
displacements (i.e., mip levels) while providing matching displacements at
tile boundaries.

Since the position and derivatives of the displaced surface f(u, v) can be
evaluated analytically, no normal maps are required. Furthermore, our ap-
proach uses an evaluation procedure where the low-frequency base sur-
face s(u, v) is evaluated at triangle vertices in the domain shader, and the
derivatives of the high-frequency displacement function D(u, v) are evalu-
ated in the pixel shader; resulting in highly accurate surface shading, even
during animation. Our scheme also supports dynamic displacement map-
ping where the displacement function can change at runtime; we prototype
a simple authoring tool to demonstrate this.

Finally, we provide a novel and efficient level-of-detail scheme based on
a multi-resolution analysis of the displacement function D(u, v). is in-
cludes computing the tessellation density on-the-Ęy and selecting the ap-
propriate mip level of the displacements. is allows us to avoid the under-
sampling problems that cause the swimming artifacts typically encountered
when varying hardware tessellation factors. Furthermore, we are able to
eliminate popping artifacts by employing fractional tessellation factors and
ĕltering between corresponding mip levels.

68



8.1 Introduction and Algorithm Overview

To summarize, we provide explicit solutions to the following problems with
displacement mapping:

• Texture (atlas) seams cause cracks

• Computing displaced surface normals

• Swimming artifacts (under-sampling)

is is achieved by the following contributions:

• Tile-based texture format for displacements on the GPU

• Analytic displaced surface: on-the-Ęy normal computation

• Efficient GPU rendering using hardware tessellation

• Smooth level-of-detail scheme in order to prevent under-sampling

8.1.2 Algorithm Overview

Our base surface s(u, v) is the limit surface of Catmull-Clark subdivision
deĕned by a two-manifold control mesh, possibly with mesh boundaries.
While this surface is traditionally deĕned as the result of the repeated ap-
plication of a set of subdivision rules, we (following [HKD93], [Sta98], and
[NLMD12]) treat this surface in a parametric form. e topology, geom-
etry, and parameterization of this surface are characterized by its deĕning
control mesh. If the faces of the control mesh are not exclusively quadri-
lateral, then one reĕnement step will ensure this. A one-to-one correspon-
dence between these quadrilateral faces and unit square domains is estab-
lished, giving rise to a global parameterization of the surface (via a face ID;
u, v ∈ [, ]× [, ] triple). is is deĕned by the corresponding subdivision
of quadrilateral control mesh faces and unit square domains. is process
has well-deĕned limits and yields a closed form (via eigenbasis functions
[Sta98], or bicubic subpatches [NLMD12]). In the interest of simplicity, we
assume consistency of quad face ID and unit square domain ID; we there-
fore safely exclude this book keeping detail from our notation.

69



CHAPTER 8 Analytic GPU Displacement Mapping for Subdivision Surfaces

Figure 8.1: Base surface: Catmull-Clark limit patches - patch boundaries shown
as thick lines. Displacement surface: biquadratic Doo-Sabin B-splines - scalar
coefficients on top of base surface normal öeld shown as thin lines.

For our analytic displacement functionD(u, v), we use biquadratic B-splines.
ese patches have an arrangement that is consistent with Doo-Sabin sub-
division. ismeans that the controlmesh for our displacement coefficients
is dual, with reĕnements, to the control mesh of the base mesh. Note how-
ever, that D(u, v) is scalar valued and can be thought of as a height ĕeld. In
other words, both the base surface s(u, v) and the displacement function
D(u, v) correspond to the same topological two-manifold; though embed-
ded in R and R, respectively. Note again, that choosing biquadratic B-
splines is closely related to Doo-Sabin subdivision and gives us a globally
C displacement function that is less costly to compute than higher order
alternatives.

Figure 8.1 shows a detail view of a model with base patch edges (thick
curves) and the displacement function coefficients over the base surface
(thin grid). As a practicalmatter, we deal with extraordinary vertices by im-

70



8.1 Introduction and Algorithm Overview

posing a constraint that causes ĕrst derivatives of the displacement function
D(u, v) to vanish at these points. is degeneracy implies that D(u, v) is a
globally C function that can be evaluated over the entire manifold without
special case handling, see Section 8.2.2 for a detailed explanation.

For each quad face of the base surface control mesh, we deĕne a texture tile
that contains the coefficients of displacement function. For non-quad faces,
we locally subdivide once to obtain quads. To evaluate the displacement
function near tile boundaries, we need coefficient data from adjacent tiles.
Trying to explicitly access adjacent tile data on the GPU would degrade
performance since only boundary evaluations would require this, causing
a branch and breaking data parallelism. Instead, we pad our tiles with a
one texel overlap region; this ensures good data parallel performance since
boundary evaluationswill not be a special case. We devise a straightforward
tile-based texture format in Section 8.2 that contains these overlaps, as well
as a simple solution to tile access issues caused by extraordinary vertices.

Treating the displaced surface in a smooth analytic form means that it will
have a well-deĕned, smooth normal ĕeld; this will eliminate many shad-
ing artifacts. Furthermore, the separation of the displaced surface into a
low-frequency base surface and a high-frequency displacement function is
ideally suited to a modern graphics pipeline implementation. We evaluated
the base surface and its partial derivatives at a relatively low frequency in
the domain shader. e derivatives of the displacement function are then
evaluated at a higher frequency in the pixel shader. e interpolated low-
frequency data, combined with the evaluated high-frequency data results
in a highly accurate normal ĕeld, ideal for lighting calculations (see Sec-
tion 8.3).

To deal with swimming artifacts caused by displacement under-sampling,
we form mip pyramids over texture tiles via a multi-resolution analysis of
the displacement functionD(u, v). In order to remove swimming artifacts,
we employ a smooth level-of-detail scheme that matches sampling density
to the appropriate displacement function mip level (see Section 8.4).

An overview of our rendering algorithm is provided by Figure 8.2.

71



CHAPTER 8 Analytic GPU Displacement Mapping for Subdivision Surfaces

Surface Shading (Pixel Shader) Surface Shading (Pixel Shader) 

𝑁𝑓(𝑢, 𝑣) =
𝜕

𝜕𝑢
𝑓 𝑢, 𝑣 ×

𝜕

𝜕𝑣
𝑓 𝑢, 𝑣  

Surface Evaluation (Domain Shader) Surface Evaluation (Domain Shader) 

𝑓 𝑢, 𝑣 = 𝑠 𝑢, 𝑣 + 𝑁𝑠 𝑢, 𝑣 𝐷 𝑢, 𝑣  

Level of Detail (Hull Shader) Level of Detail (Hull Shader) 

Tess Factor Estimation Detail Selection 

Figure 8.2: Analytic displacement mapping: algorithm overview.

8.2 Tile-Based Texture Format

We store our biquadratic displacement function coefficient data in an axis-
aligned tile-based texture format. is avoids seammisalignment problems
that plague classic u, v atlas parameterization texture methods. Our for-
mat can be seen as a GPU version of Ptex [BL08], however, we do not rely
on adjacent tile pointers since these are impractical on the GPU. Instead,
we store a one texel overlap per tile to enable ĕltering while matching dis-
placements at tile boundaries. Two of these tiles are shown in Figure 8.3.
Overlap computation, particularly at extraordinary vertices, is described in
Section 8.2.2. Each tile corresponds to a quad face of the Catmull-Clark
control mesh. We require tile edges to be power-of-two (plus overlap) in
size; that is for a tileSize = k (for integer k ≥ ) , tile edge lengths are of
the form tileSize + . However, adjacent tiles do not need to be the same

72



8.2 Tile-Based Texture Format

size. We currently only support square tiles; but rectangular tiles could be
supported at a cost of a few additional storage bits per tile.

8.2.1 Displacement Data Generation

ebase surface and displacement function needed by our algorithm could
be generated by a conversion process from a scanned dense triangle mesh,
or directly authored using a sculpting tool. Our work is agnostic to this
choice, but we discuss the trade-offs here for the sake of completeness.

Lee et al. [LMH00] assume that a high-resolution triangle mesh is given,
and then simpliĕed to obtain a coarse (Loop subdivision) base mesh. e
displacement data are then found by extraction using ray casting. Rays
are ĕred for each tile entry from the base mesh in the normal direction
and intersected with the (high-resolution) source mesh. Unfortunately, ex-
traction using ray casting has problems. In particular, rays can miss the
source surface, and typically requires manual adjustments. ese geom-
etry processing issues remain as open research problems that we do not
address here. However, assuming clean displaced sample data at all tile
locations, we are able to convert surfaces with traditional displacements
into our tile-based format. erefore, we resample a given displacement
map and solve for the biquadratic B-spline coefficients to interpolate the
displacement data. We have performed this conversion process to gener-
ate the displacement data for the sample modelsDragon Head andMonster
Frog (see Figure 8.4).

An alternative approach is to integrate scalar displacement modeling into
the authoring tool. is implies that sculpting data are restricted to trans-
lations along normals of the base surface. Artists can then directly create
the displaced surface exactly as it will appear in the ĕnal application. For
demonstration we have prototyped such a tool that allows direct authoring
of the displacement function. e tile-based data format we provide allows
a user to directly paint on the surface and modify displacements in place.
While we apply edits on the CPU, we only update modiĕed tiles in GPU
memory in order to keep CPU-to-GPU memory transfer small. Modeling

73



CHAPTER 8 Analytic GPU Displacement Mapping for Subdivision Surfaces

is analogous to multi-resolution editing as used by typical sculpting tools
such as MudBox [Autb] or ZBrush [Spe08].

We do not claim that the work-Ęow shown in our authoring tool is neces-
sarily original (details of how professional authoring tools work are propri-
etary). We do claim however, that by using our techniques, the delay and
limitations imposed by the intermediate step of dense triangle mesh cre-
ation can be avoided. Far less GPU memory is needed, and the model is
readily animated without any internal conversions. Furthermore, the ana-
lytic nature of our method provides for correct shading at all scales.

8.2.2 Overlap at Extraordinary Vertices

Near extraordinary vertices, where more (or less) than four tiles meet, we
need a way to efficiently evaluate our displacement function. Our scalar
displacement spline has a Doo-Sabin subdivision structure; however, a di-
rect evaluation approach based on eigenbasis functions does not exist since
the subdivision matrix for this case is defective [Sta98].

Instead, we impose a constraint that will allow us to evaluate the displace-
ment functionD(u, v) as a standard biquadratic B-spline over its entire do-
main. e idea is to set all tile corners corresponding to the same extraordi-
nary vertex to the same value. We ĕnd this value by averaging. e result is
that ∂

∂uD = ∂
∂vD =  at these tile corners. While this limitation is unfortu-

nate from amodeling perspective, it is beneĕcial from a rendering perspec-
tive. Evaluation of the displacement function D(u, v) is fast and consistent
since extraordinary vertices do not require branching to specialize code.
Furthermore, we can guarantee that our displacement spline D(u, v), will
be C across tile boundaries, for proof see [Rei97]. is means that extraor-
dinary vertices will not cause any shading discontinuities.

8.2.3 Mip Levels and Global Texture Design

e swimming artifacts associated with the dynamic tessellation patterns
generated by the hardware tessellation unit are under-sampling artifacts.

74



8.2 Tile-Based Texture Format

… 

Figure 8.3: Snippet of our texture format used for displacement values ( × 
per tile; blue) showing two tiles (bordered green) including overlap (red) and
mip levels.

at is, the underlying displaced surface is a high-frequency signal that is
sampled below its Nyquist rate by the tessellator. is is a classic prob-
lem in other context within computer graphics and signal processing that
can effectively be resolved using mip mapping [Wil83]. erefore, we pre-
compute a full mip map pyramid for each tile. To generate these mip levels,
we tried both Haar wavelets and a wavelet based on quadratic B-splines, so-
called B-wavelets. Haar wavelets correspond to classic 4-way averaging to
down-sample mips levels. e quadratic B-wavelets we used are based on
the work of Bertram et al. [Ber04] and involve a kernel with larger support.

Once all mip levels have been generated, we pack all tiles including its mip
levels in a single texture. In order to leverage cache coherence, mip levels
of individual tiles are stored next to each other (see Figure 8.3). While this
leaves some unused space, our experiments show that it provides superior
performance. In the end, we require (. · tileSize+) ·(tileSize+) texture
entries for a single tile including overlap and mip levels. Additionally, for
each quad face we must store its tile size and an offset to the tile location
within the global texture in a separate buffer. Tile data is then indexed by
the face ID. Note that local mip level offsets (within a tile) are computed at
runtime and do not require additional storage.

75



CHAPTER 8 Analytic GPU Displacement Mapping for Subdivision Surfaces

8.2.4 Non-uniform Tile Sizes

We support distinct tile sizes in order to allow localized detail within a
mesh. As a result there may be adjacent tiles with distinct resolutions.
To avoid cracks, we must ensure the consistency of data accessed along
boundaries between mixed resolution tiles. To this end, we require that
coarser mip levels of a higher resolution tile correspond to its lower resolu-
tion neighbor. is is achieved by computing tile overlap for each mip level
separately at matching resolutions. Since not all tiles have the same number
of mip levels (i.e., they have different resolutions), there are boundaries (at
particular mip levels) where overlap computation cannot be performed.

Tile resolution is characterized by k, where tileSize = k (tile edge length,
not including overlap). For each base mesh control vertex, we determine
the incident tile with the highest resolution k and use this number k as a
base value for that vertex. We then ĕnd the differences between the base
value of a vertex, and each incident tile's highest resolution (one of these is
guaranteed to be zero); we store these differences for each of the four tile
corners. ese values are packed into a single 32 bit integer stored per tile
(see Section 8.3.4).

At runtime we bilinearly interpolate these difference values for a given u, v
parameter value. e tile's own resolution minus this interpolated value
tells us themaximum (possibly fractional)mip level that can be accessed for
that parameter value. Along edges between mixed resolution tiles, we will
always obtain a consistent maximum mip level, and hence consistent data
accesses. In Section 8.4 we discuss a vertex based level-of-detail scheme
and how mip levels are selected at runtime.

8.3 Surface Rendering

Hardware tessellation generates triangle meshes on-the-Ęy by sampling a
user deĕned evaluation procedure for a parametric surface patch. While
this allows efficient and parallel geometry processing, this paradigm is not

76



8.3 Surface Rendering

compatible with the traditional recursive reĕnement construction of subdi-
vision surfaces. SeveralG patch-based approximateCatmull-Clark schemes
have appeared in recent years (e.g., [MNP08], [LSNC09]) to overcome this
difficulty. However, these are not adequate for our purposes, since we re-
quire aC base surface (in order to guarantee that the ĕnal displaced surface
is C). e direct evaluation procedure from Stam [Sta98] could be used to
evaluate the base surface. However, our experiments on the GPU indicate
that feature adaptive subdivision described in Chapter 4 performs signif-
icantly better (see Section 8.3.4). In the following, we ĕrst describe how
we evaluate the displacement function and then discuss how to efficiently
render the resulting surface using hardware tessellation.

8.3.1 Surface Evaluation

For given u, v coordinates and face ID, we evaluate the displaced surface

f(u, v) = s(u, v) + Ns(u, v)D(u, v),

corresponding to a texture tile, by evaluating the base patch s(u, v), its nor-
mal Ns(u, v), and the corresponding displacement function D(u, v). e
scalar displacement function is evaluated by selecting the  ×  array of
coefficients for the biquadratic subpatch of D(u, v), corresponding the u, v
value within its tile domain. We transform the patch parameters u, v into
the subpatch domain (û, v̂) using the linear transformation T:

û = T(u) = u− ⌊u⌋+ 
 , and v̂ = T(v) = v− ⌊v⌋+ 

 .

We then evaluate the scalar displacement function

D(u, v) =
∑

i=

∑
j=

B
i (T(u))B

j (T(v))di,j,

wheredi,j are the selected displacement coefficients, andB
i (u) are the quadratic

B-spline basis functions.

77



CHAPTER 8 Analytic GPU Displacement Mapping for Subdivision Surfaces

e base surface normalNs(u, v) is obtained from the partial derivatives of
s(u, v):

Ns(u, v) =
∂
∂u s(u, v)×

∂
∂v s(u, v)∥∥ ∂

∂u s(u, v)×
∂
∂v s(u, v)

∥∥

.

In order to obtain the normal of the displaced surface f(u, v), we compute
its partial derivatives:

∂

∂u
f(u, v) = ∂

∂u
s(u, v) + ∂

∂u
Ns(u, v)D(u, v) + Ns(u, v)

∂

∂u
D(u, v),

∂
∂v f(u, v) is similar. Note that the derivatives of the displacement function
are a scaled version of subpatch derivatives:

∂

∂u
D(u, v) = tileSize · ∂

∂û
D̂(û, v̂).

Further, ∂
∂u s(u, v) can be directly obtained from the base surface. To ĕnd

the derivative ofNs(u, v), we note that the derivatives of the (unnormalized)
normal N∗

s (u, v) are found using the Weingarten equation [DC76] (E, F,G
and e, f, g are the coefficients of the ĕrst and second fundamental form):

∂

∂u
N∗

s (u, v) =
∂

∂u
s(u, v) fF− eG

EG− F
+

∂

∂v
s(u, v) eF− fE

EG− F
,

∂
∂vN

∗
s (u, v) is similar. From this, we ĕnd the derivative of the normalized

normal:

∂

∂u
Ns(u, v) =

∂
∂uN

∗
s (u, v)− Ns(u, v)( ∂

∂uN
∗
s (u, v) · Ns(u, v))

∥N∗
s (u, v)∥

,

∂
∂vNs(u, v) is similar. Finally, we compute ∂

∂u f(u, v) (analogously
∂
∂v f(u, v))

and thus Nf(u, v).

78



8.3 Surface Rendering

8.3.2 Approximate Shading

Since the computation of the derivatives of the base surface normal using
the Weingarten equation is relatively costly, it is possible to approximate
the normal computation of the displaced surface Nf(u, v). Blinn [Bli78]
suggests ignoring theWeingarten term, resulting in the approximate partial
derivative:

∂

∂u
f(u, v) ≈ ∂

∂u
s(u, v) + Ns(u, v)

∂

∂u
D(u, v).

is is a reasonable assumption when the displacements are small since the
term ∂

∂uNs(u, v)D(u, v) becomes negligible. ∂
∂v f(u, v) can be approximated

the same way. We discuss this further in Section 8.5, and quantify the per-
formance of approximate versus accurate shading.

8.3.3 Rendering using Hardware Tessellation

We evaluate the base surface s(u, v), its derivatives ∂
∂u s(u, v),

∂
∂v s(u, v) and

the displacement function D(u, v) in the domain shader. Additionally, the
derivatives of the normal ∂

∂uNs(u, v), ∂
∂vNs(u, v) can be evaluated. ese

computations are used in order to determine the vertices of the triangle
mesh that are generated by the tessellator.

e vertex attributes computed in the domain shader are then interpolated
by hardware and available in the pixel shader. In the pixel shader, we eval-
uate the derivatives of the displacement function ∂

∂uD(u, v) and
∂
∂vD(u, v).

is allows us to compute the derivatives of the displaced surface normal
∂
∂u f(u, v),

∂
∂v f(u, v) at each pixel. erefore, we obtainNf(u, v) at each pixel

that corresponds to the displaced surface. Evaluating the surface normal
Nf(u, v) on a per vertex basis would degrade rendering quality, due to in-
terpolation artifacts.

As a base surface we tested Stam evaluation [Sta98] and feature adaptive
subdivision [NLMD12]. Both schemes work well, however, [NLMD12] is
faster, especially for high levels of tessellation.

79



CHAPTER 8 Analytic GPU Displacement Mapping for Subdivision Surfaces

8.3.4 Base Surface Evaluation

Feature adaptive subdivision [NLMD12] as shown in Chapter 4 leverages
the nested polynomial patch structure of Catmull-Clark subdivision. Reg-
ular regions of a control mesh deĕne bicubic B-spline patches that can be
rendered by the hardware tessellator. Further subdivision is only needed
near extraordinary vertices (a type of feature), to generate more regular re-
gions and more patches. e limit surface will contain an inĕnite number
of smaller and smaller patches around extraordinary vertices. However, af-
ter only a few subdivision levels, these patches will only cover a few pixels.
At that point, adaptive subdivision can stop, and ĕnal patches are rendered
as quads. Subdivision is carried out by GPGPU compute kernels driven by
precomputed index buffers. At each level of subdivision, regular patches
corresponding to that level are generated. Additionally, the ĕnal extraor-
dinary vertex hole ĕlling quads are generated for rendering in a separate
ĕnal pass. e advantage of feature adaptive subdivision is that the num-
ber of subdivision operations grows linearly with respect to subdivision
level, rather than exponentially as it does when reĕning the entire mesh
at each level. e high compute-to-memory bandwidth ratio of modern
GPUs is exploited since evaluating bicubic B-splines using hardware tes-
sellation performs better than streaming reĕned mesh vertices to and from
GPU memory.

Applying the displacement function for level  patches is trivial since tiles
correspond to patches. At higher subdivision levels, however, a patch will
correspond to a subdomain of a base patch. Additionally, feature adap-
tive subdivision may rotate patches (by j π ) to reduce combinatorics. So for
each patch we store a local offset within a tile and its rotation j. e size of
a patch domain is provided by its subdivision level. From these we can se-
lectively access displacements belonging to a subpatch. Aer taking patch
subdomains and rotations into account, all patches are rendered uniformly
as described in Section 8.3.3.

In the end, we use the following control structure to access displacement
data (we only need 16 byte per patch compared to the 32 byte required by
traditional texturing):

80



8.4 Level of Detail

struct {
ushort[2] globalTextureOffsetXY;
ushort[2] localDomainOffsetXY;
ushort tileSize;
ushort rotation;
uchar[4] tileSizeDifferences;

};

Rendering the extraordinary vertex quads (i.e., faces at the ĕnest subdivi-
sion level that are not being further tessellated) requires a separate render-
ing pass. In this case, an exception to the rendering rule for regular patches
occurs. Due the singularity in the subdivision surface parameterization at
extraordinary vertices, the directions ∂

∂u s and
∂
∂v s are not consistently de-

ĕned (as they are at all other points of the surface). However, the base sur-
face limit normal Ns is well deĕned at extraordinary vertices. So to obtain
a consistent normal over these ĕnal quads (in particular along quad edges),
we bilinearly blend between the limit normal Ns, and the displaced surface
normalNf involving the interpolated partials ∂

∂u s×
∂
∂v s. e blending func-

tion equals  at extraordinary vertices (for Ns) and  at other quad corners
(for Nf), and is performed on a per fragment basis without requiring the
evaluation of the Weingarten term at the extraordinary point. Fortunately,
since the quads incident on extraordinary vertices are rendered separately,
there are nomeasurable extra costs for this special treatment. Also note that
the partial derivatives of the displacement functionD(u, v) are restricted to
be  at extraordinary vertices (see Section 8.2.2); thus, the resulting surface
will be C and correspond to the displacement data.

8.4 Level of Detail

Hardware tessellation is controlled by user speciĕed tessellation (tess) fac-
tors assigned per patch in a hull shader program. e ĕxed function tessel-
lation unit then generates an appropriate sampling pattern to match these
inputs. is is particularly effective in the context of displacement map-
ping since detail can be added and removed at runtime. However, under-

81



CHAPTER 8 Analytic GPU Displacement Mapping for Subdivision Surfaces

sampling occurs when the resolution of the sampling pattern is insufficient
to reconstruct the high-frequency displacement detail. is can lead to
swimming artifacts since minor tess factor changes can cause signiĕcant
changes in the resulting surface. Our solution is to select mip levels based
on the tessellation density in order to avoid under-sampling artifacts.

8.4.1 Tessellation Factor Estimation

Weĕrst estimate tess factors; this includes two interior tess factors per patch,
as well as a tess factor for edge patch. Adjacent patches must have the same
tess factors assigned along shared edges in order to guarantee crack-free
rendering. Our approach is to determine a tessellation density value for
each vertex of the base mesh in a compute shader kernel, and then to prop-
agate these values to the (sub) patches corners using bilinear subdivision.

We determine tess factors TF for base mesh vertices v (with edges e) using
one of these simple methods (c is a user deĕned constant):

• Distance based: TF = c · ∥eye− v∥
• Screen space area based: TF = c ·

√∑
ei × ei+

• Screen space edge length based: TF = c ·maxi ∥ei∥
More elaborated methods, for instance [FMM86], that take surface curva-
ture into account are also possible, but would require greater computational
effort.

Once tess factors have been computed for patch corners, we assign patch
edge tess factors as themaximumof the two incident corner tess factors. We
treat inner tess factors analogously (maximum of opposite edge tess factors
in u and v directions).

Please note that our tess factor estimation is orthogonal to the level-of-
detail schemes shown in the context of feature adaptive subdivision (see
Section 4.7).

82



8.5 Results

8.4.2 Mip Level Selection

e tess factors computed for each of the four patch corners are passed
to the domain shader and are bilinearly interpolated producing the func-
tion TF(u, v). Based on this interpolant we select the two adjacent mip
levels ⌊log2(TF(u, v))⌋ and ⌈log2(TF(u, v))⌉ and linearly interpolate the
resulting displacements (including the derivatives). We must also clamp
this value to the maximum mip level determined in Section 8.2.4 in order
to provide consistent results at shared boundaries where tiles with distinct
resolutions meet. is allows us to guarantee a speciĕc sampling rate of the
displacement map in order to avoid under-sampling.

8.5 Results

Our implementation uses DirectX 11 with shader code written in HLSL.
Timing measurements were made on an NVIDIA GeForce GTX 480 and
are provided in milliseconds.

In order to test our method, we extracted displacement values from two
representative models, the Dragon Head and the Monster Frog. Figure 8.4
shows the rendering with and without displacements including the control
mesh of the base mesh. For these images the approximate variant (see Sec-
tion 8.3.2) without theWeingarten term is used and the level-of-detail com-
putation (see Section 8.4) is omitted. Displacements are stored using 16 bit
Ęoating points and a tile size of ×  (overall . MB) and ×  (overall
 KB), respectively. Tessellation factors are determined adaptively based
on the camera distance (637K and 328K triangles are generated) so that the
models are rendered with our algorithm in . ms and . ms. Note that we
also tried 32 bit Ęoating point displacement values; both performance and
visual quality changes were insigniĕcant.

Figure 8.5 depicts the level-of-detail scheme proposed in Section 8.4 (again
the Weingarten term is ignored). By blending between adjacent mip levels
we achieve smooth level-of-detail transitions. We found that using Haar

83



CHAPTER 8 Analytic GPU Displacement Mapping for Subdivision Surfaces

Figure 8.4: The Dragon Head (2706 patches; 1.7 ms and 1.2 ms; . MB for dis-
placement values) and Monster Frog (1292 patches; 1.3 ms and 0.85 ms;  KB
for displacement values)model renderedw/ andw/o our displacementmethod.
We displace vertices according to an analytic displacement function on top of a
Catmull-Clark base surface using hardware tessellation. Since normal computa-
tion is solely based on the displacement function, no normal map is required.
This allowsmodifying displacements at runtime and increases performance due
to a reduced memory I/O.

84



8.5 Results

Figure 8.5: Our level-of-detail scheme; precomputed mip levels are selected
based on the tess factors. These images (from left to right) are rendered using
tess factors 2, 4, 8, 16 resulting in render times 0.6ms, 1.0ms, 1.7ms, 3.3ms. Also
note that we are linearly blending between two adjacent mip levels in order to
obtain a smooth transition between selected levels.

wavelets provided smoother results, whereas biquadratic B-wavelets pre-
served more detail in down sampled mip levels. Results shown here use
the Haar wavelet mip level variant. Detail is dynamically added with an in-
creased tessellation rate and vice versa. is enforces a certain sampling rate
of the displacement values and thus prevents under-sampling artifacts. For
these images (from le to right) tess factors 2, 4, 8, 16 are chosen resulting
in render times . ms, . ms, . ms, . ms, respectively.

edifference between accurate and approximate normal computation (with
and without the Weingarten term) is shown in Figure 8.6 for the Dragon

85



CHAPTER 8 Analytic GPU Displacement Mapping for Subdivision Surfaces

Figure 8.6: Difference (Euclidean color distance in HSV) between the approxi-
mate normal computation and the accurate variant that takes the Weingarten
term into account. Patches with large displacement offsets and high curvature
are most different. For this setting (same as in Figure 8.4) the accurate variant is
% and %, respectively, slower than the approximation.

Head and Monster Frog. Patches with large displacement offsets and high
curvatures show the most difference; elsewhere the results are visually in-
distinguishable. For these render settings (same as in Figure 8.4), taking the
Weingarten term into account increases the render time from . ms to .
ms and from . ms to . ms, respectively. Considering the minor shad-
ing improvements but themajor performance decrease the accurate variant
seems to be less appropriate for real-time entertainment applications.

Figure 8.7 shows performance results of our method with various setups
using different tess factors. Rendering the basic version of our method
(i.e., without level of detail and without Weingarten term) is only slightly
slower than rendering the base surface without displacements but com-
prises high-frequency surface detail. Both level-of-detail and accurate nor-
mal computation come at some costs, whereas taking the Weingarten term
into account affects performance more drastically. We also compare our
method against traditional displacement mapping combined with tangent
space normal mapping. While the resulting surfaces of our method (ba-
sic version) and the traditional approach are about the same, our method
achieves higher frame rates. is is attributed to the fact that we only re-
quire a single displacement texture rather than a separate displacement and

86



8.6 Conclusion

normal map. Also note that tangent space normal mapping has issues with
texture seams, under-sampling artifacts, and does not support dynamic dis-
placements.

8.6 Conclusion

We have presented a method for rendering displaced Catmull-Clark subdi-
vision surfaces that avoids typical displacement mapping artifacts that have
limited their use onGPUswith hardware tessellation. ese include texture
seams, the need for normal maps to provide appropriate high-frequency
shading, and under-sampling that causes swimming. We introduced a tile-
based texture format for the GPU and deĕned an analytically smooth dis-
placement surface using a biquadratic displacement function. Data for this
function can be obtained by traditional displacement extraction (e.g., Mud-
Box [Autb] or ZBrush [Spe08]) or direct authoring. We believe these ad-
vances will be useful in both the context of authoring, as well as in the run-
time engine, where our method provides highly accurate shading of de-
tailed models at high frame rates.

87



CHAPTER 8 Analytic GPU Displacement Mapping for Subdivision Surfaces

0

5

10

15

20

1 2 4 8 16 32

R
e

n
d

e
rt

im
e

 (
m

s)
  

 D
ra

g
o

n
 H

e
a

d
 

Tessellation Factor 

No Displacement

Our Displacement

Traditional Displacement w/ Normal Mapping

Our Displacement w/ LOD

Our Displacement w/ Weingarten

Our Displacement w/ LOD and w/ Weingarten

0

2

4

6

8

10

12

14

1 2 4 8 16 32

R
e

n
d

e
rt

im
e

 (
m

s)
  

 M
o

n
st

e
r 

F
ro

g
 

Tessellation Factor 

No Displacement

Our Displacement

Traditional Displacement w/ Normal Mapping

Our Displacement w/ LOD

Our Displacement w/ Weingarten

Our Displacement w/ LOD and w/ Weingarten

Figure 8.7: Performance results for rendering thebase surface, rendering thedis-
placed surface using our method with various setups, and a comparison against
traditional displacements combined with tangent space normal mapping. Note
that traditional displacement mapping is always slower than our basic method
even so dynamic tangent and bitangent computation (required for animation)
is omitted.

88



PART III

Performance Enhancement
by Patch Culling





CHAPTER 9

Introduction

In Chapters 4, 5, 8 we have presented techniques for rendering surfaces
using hardware tessellation. e corresponding elevation of patch primi-
tives to ĕrst class objects in the graphics pipeline offers a unique opportu-
nity to revisit classic culling methods. erefore, we improve upon those
techniques with new insights tailored to the computational demands of
patch processing. On the one hand we present an approach for back-patch
culling (see Chapter 11) and on the other handwe showhow to apply patch-
based occlusion culling (see Chapter 12). While the ĕrst algorithm identi-
ĕes back-patches based on patch normals, the second approach relies solely
on visibility information, thus allowing surfaces to have displacements.

Our culling techniques are agnostic to a particular patching scheme; our
only assumption is that patches obey the convex-hull property, and the ĕrst
partial derivatives can be bounded. For simplicity, we consider widely used
bicubic Bézier patches, though our algorithm is easily extensible to other
patch types. ose could be the bicubic B-spline patches generated by our
feature adaptive subdivision approach presented in Chapter 4.

In the end, both of our culling approaches signiĕcantly speed up render-
ing by avoiding unnecessary surface evaluation and shading operations of
hidden patches, invariant of the used patching scheme.

91





CHAPTER 10

Previous Work

10.1 Back-Patch Culling Techniques

Back-face culling is a standard method in today's graphics hardware to re-
duce triangle rasterization and pixel/fragment shading operations. To avoid
calculating the dot-product between plane normal and viewing direction
for each polygon, hierarchical approaches cluster polygons by normal and
cull entire polygon groups [KM96]. is concept can be transferred to para-
metric surfaces, where back-patch culling removes an entire patch before it
is tessellated into polygons. Such schemes take patch normals or tangent
planes into account in order to determine whether a patch is back or front-
facing.

e cone of normals presented by Shirmun and Abi-Ezzi [SAE93] is one
such technique. In a preprocess, they determine the normal patch, for a
given Bézier patch and compute its bounding cone of normals deĕned by
apex : l, axis : a, angle : α. N(u, v) = ∂B(u, v)/∂u × ∂B(u, v)/∂v,
During runtime, for eyepoint e the vector v = (e− l)/∥e− l∥ is used in the
simple test v · a ≤ sin(α) to determine if the patch can be culled safely. e
bound is comparably tight and the runtime test fast, but the calculation of
the normal patch is expensive. is is not a problem for static models, but
a draw back for patches that are animated or generated on-the-Ęy.

ough the cone of normals provides tight normal bounds, its computa-
tion is relatively costly. An approximate cone of normals can be computed
at low cost by combining a tangent and bitangent cone [SM88]. Munkberg
et al. [MHTAM10] used this in the context of bounding displaced patches
and applied this approach on a modern GPU with hardware tessellation.

93



CHAPTER 10 Previous Work

ey perform the calculations in the constant hull shader and set the tes-
sellation factors of back-facing patches to zero in order to cull them. While
they describe a general strategy to bound displaced Bézier patches, it is im-
portant to note that their GPU implementation only considers constant dis-
placements (i.e., a constant displacement value per patch). We use a similar
idea for our occlusion culling approach in Chapter 12 to deal with displaced
patches. However, our bounds are optimized with respect to screen space
area, thus provide better culling results. e work of Kumar et al. [KML96]
focuses on NURBSmodels. For each surface patch, they compute a bound-
ing box for the normalized control vectors of the normal patch. At runtime,
the vertices of this bounding box are tested against the viewing direction to
see if all surface normals point away from the viewer. If so, then the patch is
back-facing and culled. is is similar to the cone of normals approach, but
does not take into account that rays from the eye to points on the patchmay
differ from the view direction. A general problem with back-patch culling
is the inability to deal with displaced patches. Hasselgren et al. [HMAM09]
address this by using a Taylor series to represent the displaced surface. Nev-
ertheless, this has severe limitations (e.g., cannot deal with fractional tessel-
lation) and its culling rate is poor. In Chapter 11 we present a near optimal
back-patch culling technique [LNE11] that utilizes the parametric tangent
plane.

10.2 Occlusion Culling

In addition to a back-patch culling approach, we also present a technique
that performs occlusion culling of patches (see Chapter 12, [NL12]). ere
exist many occlusion algorithms in the context of polygon rendering. A
survey of early methods is provided by Cohen-or et al. [COCSD03].

On modern GPUs, hardware occlusion queries provide information about
whether an object contributes to the current frame. In DirectX 11 predicate
rendering (GL_NV_conditional_render in OpenGL) allows conditional
rendering without GPU-CPU synchronization; i.e., if an occlusion query
is not yet complete until the next conditional draw call, rendering will be

94



10.2 Occlusion Culling

performed ignoring the actual query result. ere are several methods that
efficiently use hardware occlusion queries by reducing the number of issued
queries in the context of per object occlusion culling [Sek04], [BWPP04],
[GBK06], [MBW08]. However, all these algorithms share several problems
that makes their application on a per patch level inefficient: they require
separate draw calls for each cull primitive (this severely affects performance
since thousands of separate draw calls could be necessary to render a single
object); spatial hierarchies are required on the CPU side to limit the num-
ber of issued queries (updates become costly under animation); rasterizing
bounding geometry creates additional overhead (latency and compute).

Engelhardt and Dachsbacher [ED09] propose two methods for granular
visibility queries that make query results available on the GPU: pixel count-
ingwith summed area tables and hierarchical itembuffers. eĕrstmethod
assigns query objects to color channels and uses summed area tables to
count covered pixels. us, only four query objects per region are sup-
ported, which is insufficient considering thousands of patcheswhose bounds
overlap particularly when considering displacements. Hierarchical item
buffers write IDs of query objects to resulting pixels. e resulting buffer
is interpreted as a point list and in a second (count) renderpass a vertex
shader distributes points (i.e., query IDs) to pixels accordingly. With alpha
blending enabled the number of covered pixels can be obtained for each
query object. While this might be possible for a larger number of query ob-
jects, rendering a single point for each pixel (i.e., in practice over a million
points) seems to be signiĕcant overhead. In addition, on-the-Ęy bounding
geometry computation and rasterization remains a problem.

We base our occlusion culling approach on the hierarchical Z-buffer pro-
posed by Greene et al. [GKM93]. ey use an object-space octree of the
scene geometry and a screen space Z-pyramid (Hi-Z map). e pyramid's
lowest level is the Z-buffer; each higher level is constructed by combining
four Z values into a Z value at the next lower level by choosing the farthest
Z value from the observer. en the cubes of the octree are tested against
the best ĕtting entry in the Hi-Z map. Shopf et al. [SBOT08] use the Hi-Z
map to perform culling based on geometry instances. As an extension to
the original hierarchical Z approach, they use bounding spheres and four

95



CHAPTER 10 Previous Work

Hi-Z map samples to obtain better coverage. However, in their approach
occluders (i.e., the terrain) are ĕxed and occlusion culling is only applied
to selected objects (i.e., characters). Since they use geometry instances all
tested objects (must) have exactly the same topology and obtaining the cull
decisions involves a CPU query.

In contrast to previous occlusion culling methods, our approach shown in
Chapter 12 supports fully animated objects and does not require any pre-
computed scene data structures. Furthermore, we are able to cull subsets
of objects since our algorithm works at the patch level; there are no static
occluder lists, so all objects can act as occluders or be occluded.

96



CHAPTER 11

Effective Back-Patch Culling for
Hardware Tessellation

11.1 Introduction and Algorithm Overview

On current hardware back-facing triangles can be culled to avoid unneces-
sary rasterization and pixel shading. However, if the plane normals of all
generated triangles for a given patch point away from the viewer, consider-
able amounts of computation are wasted for surface evaluation and triangle
setup. In this chapter we explore the feasibility and performance of back-
patch culling. at is, we perform a culling test on entire patch primitives
earlier in the pipeline, to avoid computations that happen before rasteriza-
tion.

is is not a new idea, but previous to our approach [LNE11] only low order
approximations have appeared [SAE93, KML96]. is is likely due to the
limited compute resources of previous generation graphics processors. As
pointed out by Kumar and Manocha [KM96], patch culling is a trade-off
between efficiency: how much computational effort is needed to reach a
culling decision, and effectiveness: how many patches are actually culled.

We present a novel approach, based on the parametric tangent plane of
a patch to accurately partition the space of eyepoint positions into front-
facing, back-facing, or silhouette regions. As shown in Figure 11.1, this is
more effective than previous methods.

Operating in clip space simpliĕes our test considerably, and all steps vec-
torize very well. Our computation times are comparable to existing ap-
proaches, but the increased effectiveness gives us a performance advantage

97



CHAPTER 11 Effective Back-Patch Culling for Hardware Tessellation

as patch tessellation density increases.

In addition to back-patch culling, we believe that accurate visibility classi-
ĕcation of patches has other potentially useful applications.

To sum up, our contributions of our approach are:

• Classiĕcation between front-facing, back-facing and silhouette patches

• Effective culling: best cull ratio compared to other algorithms

• SIMD efficient GPU implementation

a) b) c) d)

Figure 11.1: The Killeroo (a, 11532 Bézier patches), is rendered with different
strategies for back-patch culling. For eachalgorithmwevisualizewasted compu-
tations: areas processed by the tessellator but back-facing and hence not visible;
less area is better. The cone of normals (b, 3697 patches culled) is effective, but
costly for dynamic scenes. Its approximation from tangent and bitangent cones
is faster to compute, but less precise (c, only 2621 patches culled). Our approach
is faster than the cone of normals, and more effective (d, 4604 patches culled).

11.2 Parametric Tangent Plane

In this section, we develop the key geometric concepts behind our patch
culling algorithm and introduce the parametric tangent plane. We work
with homogeneous vectors inR, andmaintain a distinction between points,
represented by row vectors, and planes represented by column vectors. We

98



11.2 Parametric Tangent Plane

note the distinct transformation rules

q = p · P and s = P− · t

for points p and q, and planes s and t, given the × transformationmatrix
P.

We focus on widely used bicubic Bézier patches, but extending our ideas
to other polynomial patch types could be done in a similar fashion. For
instance our approach could be easily integrate into the feature adaptive
subdivision method presented in Chapter 4.

A (rational) bicubic Bézier patch is deĕned by

B(u, v) = B(u) ·


b b b b
b b b b
b b b b
b b b b

 · B(v),

where u, v ∈ [, ], Bd
i (t) =

(d
i
)
( − t)d−iti are the degree d Bernstein

basis functions, and bj ∈ R are homogeneous 3D control points. e
parametric tangent plane T(u, v) of B(u, v) satisĕes B(u, v)

∂
∂uB(u, v)
∂
∂vB(u, v)

 · T(u, v) =

 



 .

We can compute T(u, v) directly as

T(u, v) = cross4
(
B(u, v), ∂

∂uB(u, v),
∂
∂vB(u, v)

)
, (11.1)

where cross() is the generalized cross product of 3 vectors in R, see Sec-
tion 11.4.1. For bicubic B(u, v), the parametric tangent plane is a polyno-

99



CHAPTER 11 Effective Back-Patch Culling for Hardware Tessellation

mial of bidegree  and can be written in Bézier form as

T(u, v) = B(u) ·


t t · · · t t
t t · · · t t
...

...
. . .

...
...

t t · · · t t
t t · · · t t

 · B(v),

where the ti form an  ×  array of control planes. Each ti results from a
weighted sum of cross() products among the control points of B(u, v).

Note thatT(u, v) being of bidegree  is less by one in both parametric direc-
tions than expected from adding the polynomial degrees of inputs to equa-
tion (11.1). is is easily veriĕed with symbolic algebra soware, but can
be traditionally proven using properties of DeCastlejau's algorithm [FH00].
We have not seen the object that we are calling the parametric tangent plane
formally deĕned or used in previous work. We acknowledge the strong
probability that the parametric tangent plane has a classical deĕnition, but
we have not found one.

11.3 Visibility Classiöcation

We use the generic term visibility here to mean that a point on an oriented
surface can be seen from a given eyepoint. We do not consider the effects
of occlusion, self or otherwise. Our goal is to classify entire surface patches,
with respect to a given eyepoint, as front-facing, back-facing, or silhouette.
We ĕrst note an optimization that will signiĕcantly reduce the computa-
tional cost of our algorithm; we do this in the context of familiar triangle
culling.

11.3.1 Triangle Culling

Given a triangle deĕned by points v, v, and v, its oriented spanning plane
is t = cross4(v, v, v). We say that triangle vvv cannot be seen from

100



11.3 Visibility Classiöcation

eyepoint e, if e lies in the negative half-space deĕned by t. We express this
as a dot product, if e·t <  then triangle vvv is back-facing. Conversely, if
e ·t >  we say that triangle vvv is front-facing. Otherwise if e ·t =  then
triangle vvv appears edge-on; we classify such triangles as silhouette.

Note that this visibility classiĕcation does not depend on a coordinate sys-
tem. Given the composite world, viewing, and perspective transform P that
maps world space to clip space, we can write

e · t = e · I · t = (e · P) ·
(
P− · t

)
= f · s,

where f and s represent the transformations of eyepoint e and plane t to
clip-space, respectively. By convention f =

[
  α 

]
in clip-space,

so that f · s = α sz, where sz is the z component of s, and α is of known
sign. is means that in clip-space, visibility classiĕcation can be done by
simply checking the sign of sz. So instead of computing the plane containing
triangle vvv in world space and dotting the result with e, we only need to
compute the z component of the plane containing the transformed vertices
in clip space. Similarly for patch culling, we only need to compute the clip-
space z component of the parametric tangent plane.

11.3.2 Patch Culling

We classify the visibility for a patch B(u, v) using its parametric tangent
plane T(u, v), u, v ∈ [ , ], with respect to homogeneous eyepoint e
using the Continuous Visibility function:

CVis (B, e) =


back-facing, if (e · T(u, v) < ) , ∀ u, v ∈ [ , ],
front-facing, if (e · T(u, v) > ) , ∀ u, v ∈ [ , ],
silhouette, otherwise.

A similar viewing space back-patch condition appears in [KM96]. ough
equivalent, our classiĕcation is more general in that it is invariant to pro-
jective transformation. Computing CVis (B, e) precisely will require costly
iterative techniques to determine the roots of a bivariate polynomial. In-

101



CHAPTER 11 Effective Back-Patch Culling for Hardware Tessellation

stead, we compute a more practical discrete variant, based on the Bézier
convex hull of the scalar valued patch

e · T(u, v) = B(u) ·


e · t e · t · · · e · t e · t
e · t e · t · · · e · t e · t
...

...
. . .

...
...

e · t e · t · · · e · t e · t
e · t e · t · · · e · t e · t

 · B(v).

Patch visibility classiĕcation reduces to counting the number of negative
values,Ncnt, produced by taking the 64 dot products e · ti using theDiscrete
Visibility function:

DVis (B, e) =


back-facing, if (Ncnt = ) ,
front-facing, if (Ncnt = ) ,
silhouette, otherwise.

It is important to note that the classiĕcation produced by DVis (B, e) is
a conservative approximation of CVis (B, e): sign differences among the
Bézier coefficients are a necessary, but not sufficient condition for deter-
mining the presence of a root. erefore, it is possible for DVis (B, e) to
classify a front or back facing patch as silhouette in error. While we can
construct such cases, they seem to be rare in practice, and as demonstrated
in Section 11.6, we are able to cull signiĕcantly more patches than previous
techniques.

11.4 Serial Algorithm

Using symbolic algebra soware, we expand equation (11.1) for the para-
metric tangent plane and ĕnd its Bézier representation. Each Bézier co-
efficient ti is the result of a weighted sum of cross() products among the

102



11.4 Serial Algorithm

control points of the bicubic patch B(u, v)

ti = · · · + wgt · cross4(bj, bk, bl) + · · ·

For each of these cross() products, we extract a destination index i, and
source indices j, k, and l, as well as the corresponding scalar weight wgt.
ese values will be the same for all bicubic Bézier patches, and we place
them in a header ĕle with format

uint idx[4][] = {{i1, j1, k1, l1},
...
{im, jm, km, lm}};

float wgt[] = {w1, ..., wm};

For the bicubic Bézier case, we require 516 cross() products that can be
precomputed according to Section 11.4.1 and stored in a buffer.

As noted earlier, we operate in clip space, and thus only need the z compo-
nent of the parametric tangent plane. Using the predetermined indices and
weights, the serial algorithm to compute this is

for (uint k = 0; k < 516; k++)
t[idx[k][0]] += wgt[k]

* cross4Z(
b[idx[k][1]],
b[idx[k][2]],
b[idx[k][3]]);

where float4 b[16] contains the values of the patch control points aer
transformation to clip space, crossZ() computes just the z component of
the four-dimensional cross product cross() (see Section 11.4.1), and float
t[64] will contain the z components of the control planes which are all
initialized to zero.

103



CHAPTER 11 Effective Back-Patch Culling for Hardware Tessellation

11.4.1 The 4D Cross Product

Our back-patch culling relies on the 4D cross product (see Blinn [Bli03]).
It is deĕned as the function cross4(a, b, c) =

[
x y z w

]T:
x = det

 ay by cy
az bz cz
aw bw cw

 , y = − det

 ax bx cx
az bz cz
aw bw cw

 ,

z = det

 ax bx cx
ay by cy
aw bw cw

 , w = − det

 ax bx cx
ay by cy
az bz cz

 .

Geometrically,
[
x y z w

]T is the oriented plane that spans homoge-
neous points a, b, c ∈ R. In addition,

[
x y z w

]T is orthogonal to
all three vectors a, b, c and has the length of the volume of the parallelotope
(an N-dimensional parallelepiped) spanned by a, b, c.

11.5 Parallel Algorithm

Creating a parallel version of the parametric tangent plane algorithm is rel-
atively straightforward, though a little care is needed to avoid write hazards.
e ĕrst observation is, that each weighted cross() product is independent
of every other. So our strategy will be to have each thread in a group com-
pute such a weighted cross() product, and add its result to a target location
in shared memory.

ere are 516weighted cross() products, but only 64 target locations. Allo-
cating more than 64 threads per patch will guarantee a write hazard, since
a single target location will simultaneously be written by more than one
thread. Allocating exactly 64 threads would not be efficient, since the dis-
tribution of weighted cross() products is non-uniform over the 64 target
locations, so many threads will idle aer only a few computations. is

104



11.5 Parallel Algorithm

distribution is illustrated in the matrix below:

       
       
       
       
       
       
       
       


.

Each entry of this matrix shows the number of times the corresponding
target location is accessed by the 516 weighted cross() products. By parti-
tioning the target locations into × blocks as shown above, and summing
the blocks we get the following much more uniform distribution

   
   
   
   


is suggests a strategy where we allocate 16 threads per patch, and each
thread is responsible for the 4 corresponding target locations of the  × 
target array. Each thread will need to loop 33 times, compute a weighted
cross() product, and add the result to a target shared memory location.
Aer reordering the array elements within idx and wgt according to this
load distribution, the parallel code to compute the parametric tangent plane
looks like

// ceil(516 / 16) = 33 iterations max.
for (uint k = threadIdx; k < 516; k += 16)

t[idx[k][0]] += wgt[k]
* cross4Z(

b[idx[k][1]],
b[idx[k][2]],
b[idx[k][3]]);

105



CHAPTER 11 Effective Back-Patch Culling for Hardware Tessellation

As in the serial variant of our approach (see Section 11.4), we assume that
the array b[16] contains the patch control points aer transformation to
clip space. is means that we only need to compute the z component of
cross(). e ĕnal step is counting the signs of t[64] using a simple parallel
reduction strategy on a per patch level.

11.6 Results and Discussion

To evaluate our approach we extend the SimpleBezier example from the
DirectX 11 SDK. As real world applications will spend additional resources
to determine tessellation factors, or construct tangent patches and evaluate
those, this serves as a lower bound for the performance gains expected due
to the better cull precision. We are mainly interested in dynamic surfaces,
and hence only use the Bézier control points as input for the cull tests for
each frame.

In contrast to Munkberg et al. [MHTAM10], we implement our cull tests
using DirectX 11 compute shaders, and feed the decision into the constant
hull shader using a small texture. is gives us more Ęexibility and is con-
siderably faster, as the constant hull shader seems to execute only a single
thread per patch and multiprocessor. Also, the performance difference be-
tween tangent cone [SM88] (TC) and normal cone [SAE93] (NC)
is much less dramatic than reported by Munkerberg et al. [MHTAM10];
we attribute this difference to a combination of implementation details and
more recent hardware. For TC and NC we use 1 thread per patch
and 128 patches per block. For ours we use 16 threads per patch and 8
patches per block. ose settings were determined empirically to give the
best performance.

e effectiveness of back-patch culling strongly depends on the usedmodel
and viewpoint. Our test culls more patches than the previous methods for
any view. To quantify the improvement, we determine the number of culled
patches for 10K random views, and list the average cull rates for three pop-
ular models in Table 11.1.

106



11.6 Results and Discussion

Big Guy Monster Frog Killeroo
(3570) (5168) (11532)

TC 1260 (35%) 1911 (37%) 3790 (33%)
NC 1601 (45%) 2286 (44%) 4685 (40%)
O 1729 (48%) 2478 (48%) 5206 (45%)

Table 11.1: Average cull rates for 10K random views. Our method consistently
performs best, and culls close to 50% of the patches.

For a particularly challenging view of the Killeroo, shown in Figure 11.1,
we measure the total time per frame for different tessellation factors, and
graph it in Figure 11.2. We need 0.76ms per frame to cull 4604 patches.
is is faster than NC, which needs 0.86ms to cull 3697 patches. For
tessellation factors larger than 8 the additional cull precision pays off, and
our time per frame is lower than with TC, which needs 0.36ms, but
only culls 2621 patches.

ese timings seem counterintuitive, as the arithmetic cost of our algorithm
is roughly 10 to 20 times higher than that of NC and TC. How-
ever, both algorithms require many registers, limiting the number of active
blocks per multiprocessor. In ourmethod each individual thread needs few
registers, and shared memory is naturally used very efficiently. As result we
have much more active threads, but a comparable number of patches per
multiprocessor, and hence similar computation times.

Aside from performance and precision advantages, our classiĕcation tech-
nique is projectively invariant, and we support rational bicubic patches di-
rectly. Further, by counting positive values (Pcnt) among the 64 dot prod-
ucts inDVis (B, e) and changing the back-facing condition to: if(Pcnt = ),
we can correctly classify degenerate patches with collapsed edges, e.g., the
top of the Utah teapot.

107



CHAPTER 11 Effective Back-Patch Culling for Hardware Tessellation

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

1	
   16	
   32	
  

NoCull	
   TCone	
   NCone	
   Ours	
  

Figure 11.2: Time per frame for Figure 11.1 using different tessellation factors.
The rendering times for the other models and views behave similar. Time in ms
on an Nvidia GTX 480.

11.7 Conclusion

We presented a novel strategy to cull back-facing patches, to avoid unnec-
essary work in the hardware tessellator. We demonstrated its feasibility for
bicubic Bézier patches, but we are not limited to this patch type. e calcu-
lations vectorize very well, and compared to the popular cone of normals
approach it is both more effective and more efficient on current hardware.
Compared to the fast approximation using tangent and bitangent cones it
is about 2x slower, but the better cull rate pays off quickly as tessellation
density increases.

In addition to back-patch culling, we feel that our precise visibility classi-
ĕcation technique could be useful for other applications as well. One area
we plan to explore is better handling of adaptive tessellation for silhouette
patches, as these are generally the areaswheremost over-tessellation occurs.

108



CHAPTER 12

Patch-Based Occlusion Culling for
Hardware Tessellation

12.1 Introduction and Algorithm Overview

In this chapter we present an patch-based occlusion culling approach for
hardware tessellation. Previous occlusion culling algorithms, typically be-
ing applied to trianglemeshes, required a scene graph structurewhose leaves
bound a sufficiently dense, and static collection of geometry in order amor-
tize their cost. is limited occlusion culling to ĕxed scene graphs thatmust
be traversed at runtime. Our new patch-based approach is unstructured in
the sense that we can process standard lists (buffers) of patch primitives and
still achieve signiĕcant performance gains.

e key observations we leverage are 1) that patches are compact and are
(relatively) easy to ĕnd bounds for in screen space; and 2) that commit-
ting to the evaluation, tessellation, and generation and rejection of triangles,
corresponding to a patch is (relatively) expensive. Since the cost of process-
ing patches that are not seen is high, and the cost of ĕnding screen space
bounds for patches is low, the extra computation needed to perform occlu-
sion culling is easily amortized. Our algorithm is easy to implement and
requires no pre-processing of patch-based models. Since the screen space
bounds of individual patches are re-computed every frame, we automati-
cally support animated models. Furthermore, to maximize utility, we allow
patches to have displacement maps applied and offer a novel technique for
bounding such patches.

e strategy behind our algorithm is to use temporal coherence tomaintain
the visible/occluded status of individual patches, use the visible patches to

109



CHAPTER 12 Patch-Based Occlusion Culling for Hardware Tessellation

build a hierarchical Z-buffer [GKM93] on-the-Ęy, and then to update the
visibility status of patches. Our method is conservative in that occluded
patches may occasionally be rendered (needlessly), but visible patches are
always rendered. e culling overhead for our algorithm is small compared
to the computational savings, resulting in signiĕcant performance gains
(see Figure 12.1). Note that even for simple scenes (e.g., single objects) and
small tess factors our algorithm is effective (see Figure 12.9).

We summarize our main contributions as follows:

• Fast and efficient occlusion culling for patches

• Novel bounds for patches with displacements

• Dynamic scenes with patch occluders and occludees

12.2 Culling Pipeline

Our algorithmworks bymaintaining visibility status bits (visible, occluded,
or newly-visible) of individual patches as each frame is rendered. Assume
that a frame has already been rendered and these status bits have been as-
signed to patches. At the start of a new frame, patches marked as visible are
rendered. From the Z-buffer of this frame, a hierarchical Z-buffer (orHi-Z
map) is built using a compute shader (or CUDA kernel). Next, all patches
are occlusion tested against the newly-constructedHi-Zmap. Patches pass-
ing this test (i.e., not occluded) are either marked as visible if they were pre-
viously visible, or newly-visible if they were previously occluded; otherwise
they are marked as occluded. Finally, all patches marked as newly-visible
are rendered to complete the frame. See Figure 12.2 for a Ęow diagram of
this process.

e simplest way to initialize the visibility status bits of patches would be to
mark all patches visible. However, this would cause all patches to be ren-
dered in the ĕrst frame. To avoid this worst-case behavior, we mark half of
the patches as visible and the other half occluded. Even randomly assigning
visibility status bits will allow at least some patches to be occluded; which is

110



12.2 Culling Pipeline

(a) . vs .ms (b) . vs .ms

(c) . vs .ms (d) . vs .ms

Figure 12.1: Our algorithm performs culling on a per patch basis and supports
patches w/ and w/o displacements. The images above are rendered both using
and not using our culling method; see the performance gain below the respec-
tive image. Our method signiöcantly speeds up rendering of scenes with even
moderate depth complexity (a, .% culled) including triangle mesh occluders
(c, .% culled). Evenwhen having intra-object occlusion only, render time can
be reduced (b, .% culled; d, .% culled).

better than none. Aer the ĕrst frame has been rendered, however, we rely
on temporal coherence to approximate these visible and occluded sets. Our
observation is that between frames, most visible patches stay visible while
most occluded patches stay occluded. Obviously, for dynamic scenes some
visible patches will become occluded between frames, and vice versa (see
Figure 12.9 right). One of the key features of our algorithm is to efficiently
track these changes so that each new frame begins with a good approxima-
tion to the set of visible patches.

111



CHAPTER 12 Patch-Based Occlusion Culling for Hardware Tessellation

Render Newly-visible patches Render Newly-visible patches 

Test Visibility Test Visibility 
if (!CULL) tag visible else tag occluded 

Build Hi-Z Map Build Hi-Z Map 

Render Patches Tagged Visible Render Patches Tagged Visible 

Figure 12.2: Overview of our culling pipeline within a frame: örst, patches
tagged visible are rendered; the resulting depth buffer is used to construct the
Hi-Z map. Next, all patches are tested for visibility against the Hi-Z map. Last, all
patches that were previously tagged occluded but are now visible (i.e., newly-
visible) are rendered.

While the main focus of our work is on hardware tessellation of animated,
patch-based objects such as characters, scene environments are oen repre-
sented by trianglemeshes. We render trianglemeshes before generating the
Hi-Zmap so their depth information is included in theHi-Zmap construc-
tion. is will allow triangle meshes to be treated as occluders for patch-
based objects. It is also straightforward to combine this per patch algorithm
with previous approaches that focus on entire objects. eHi-Zmap infor-
mation can be used to determine whether an object's bounding volume is
fully occluded. However, computing bounding volumes of dynamic objects
on-the-Ęy can be be costly.

12.2.1 Aggressive Culling

epipeline shown in Figure 12.2 can be even simpliĕed by omitting the last
render pass. Updating patch tags will still ĕx rendering in the subsequent
frame. is will cause patches becoming visible to appear with a one frame
delay. is may be tolerable in some real-time applications since that delay

112



12.3 Applying Cull Decision

may not be noticeable at high frame rates. However, we do not evaluate this
option in our results.

12.3 Applying Cull Decision

Wenowdescribe how todetermine patch visibilitywithin our culling pipeline
(see Section 12.2). We separate this into the problem of obtaining occlusion
information (i.e., Hi-Z map creation) and the culling test itself.

12.3.1 Computing Occlusion Data

As mentioned in Section 12.2, visible patches (i.e., occluders) are rendered
ĕrst. In order to obtain occlusion information, we employ a hierarchical
Z-buffer approach. erefore, we use the depth buffer resulting from ren-
dering the visible patches to generate a Hi-Z map [GKM93], [SBOT08].

e Hi-Z map construction is similar to standard mip mapping where four
texels are combined to determine a single texel of the next mip level. In-
stead of averaging texels, the value of the new texel is obtained by the max-
imum depth value of the corresponding four child texels (i.e., it is set to the
largest distance value). us, within a region covered by a particular texel
(no matter which mip level) a conservative bound is given, so that at the
texel's location no objects with larger depth values are visible. Five levels of
an example Hi-Z map are shown in Figure 12.3. Note that watertight patch
joins are crucial for a good Hi-Z map since cracks at patch boundaries will
propagate a false depth value through the hierarchy.

We found binding the hardware depth buffer to be relatively costly, see
Figure 12.7 right. ough the highest-resolution level of the Hi-Z map
could correspond to depth buffer, we avoid copying this data and use a half-
resolution image as the highest level. is is reasonable as the full resolu-
tion map would only be useful to cull tiny patches. We assume that such
tiny patches will not be tessellated with a high enough tess factor to make
patch occlusion culling effective; thus the highest level is not needed.

113



CHAPTER 12 Patch-Based Occlusion Culling for Hardware Tessellation

e different Hi-Z levels are stored in a single texture with its respective
mip levels to obtain fast access. We deal with non-power-of-two size im-
ages by enlarging the Hi-Z map's width and height to the next greater (or
equal) power of two. is is necessary since the default size of mip map
levels will always be even; e.g., a  ×  texture will be down sampled to
 × . e resized Hi-Z map, however, allows us to take all texels of the
parent level into account; e.g., a × texture will be down sampled to ×.
While unused texels are initialized with , all kernels can be used without
any modiĕcation.

Figure 12.3: Five levels (0,4,5,6,7) of a Hi-Z map corresponding to a view of the
Big Guymodel.

12.3.2 Cull Decision

Cull decisions are applied per patch. As a representative patch primitive
we use bicubic Bézier patches consisting of a  ×  array of control points
(the basic approach could be applied to various other patching schemes).
For nowwe assume the patches do not have displacement maps applied; we
will extend the algorithm to include displacements in Section 12.3.3. In or-
der to determine visibility of a patch, we compute its axis-aligned bounding
box (AABB) in clip space. We use the AABB's front plane to test against the
Hi-Z map (see Section 12.3.1). Depending on the bounding box's width
and height in screen space a particular level of the Hi-Z map is chosen:
level = ⌈log(max(width, height))⌉. e bounding box's area will be con-
servatively covered by at most  texels of the selected Hi-Z map level. Con-
sidering multiple Hi-Zmap entries allows us to achieve better coverage; see
Figure 12.4 for the distinct Hi-Z access patterns. If the respective depth val-
ues of the Hi-Zmap are all smaller than theminimumZ value of the patch's

114



12.3 Applying Cull Decision

bounding box, we set the visibility status bit of the patch to occluded.

Figure 12.4: Different Hi-Z access patterns; at most four texels (blue) are chosen
to cover the screen space bounding rectangle (yellow) of a patch. The case that
only one texel is used (right) is special since it only applies at the önest Hi-Z level
where no further reönement is possible.

Since we must compute the screen space bounding box of a patch to per-
form occlusion culling, we can also apply view frustum culling at virtually
no cost. at is, patches whose bounding box lies entirely outside of the
clipping cube are culled. We clamp bounding box corners to screen space
if they are partially outside to ensure that all corners map to Hi-Z values.
While we perform both culling methods in the same kernel, view frustum
culling is applied ĕrst since its computation is less costly.

12.3.3 Displaced Patches

Displacementmapping is an important use case for hardware tessellation as
it allows adding high-resolution geometric detail at low cost. We now adapt
our algorithm to handle patches with displacements. Although determin-
ing the patch bounds is different, creating theHi-Zmap (see Section 12.3.1)
is the same for patches with, and without, displacements since we obtain
visibility information directly from the depth buffer.

For displaced patches, we use a camera-aligned frustum (CAF) as a bound-
ing volume; that is, a frustum whose side planes contain the origin in cam-
era space. In camera space the eyepoint is at the origin and the viewing
direction is the positive Z-axis (in OpenGL it's the negative Z-axis). Unlike
the non-displaced case, we do not yet apply the perspective transform since

115



CHAPTER 12 Patch-Based Occlusion Culling for Hardware Tessellation

this projective mapping would destroy Euclidean distance metrics that we
rely on to construct our bounds.

First, control points are transformed to camera space. We then ĕnd the
minimum Z value (minZ) among the control points to determine the front
plane of the CAF (a plane perpendicular to the viewing direction). Next,
we project the patch control points onto the CAF's front plane. Since con-
trol points Pi are in camera space, we can achieve this by coordinate rescal-
ing: P′i = Pi · minZ

Pi,z . Side planes of the CAF are then obtained by com-
puting the minimum and maximum x, y values of the P′i . Note that the re-
sulting frustum is the generalization of the screen space AABB. erefore,
its screen space projection will give the same result non-displaced patches
(Section 12.3.2), if all displacements were zero.

) 

) 

Ͳ −ͳ ͳ 

� � � �+ � �− � �− 

� �+ � �+ � �− � �− 

� �+ 

Figure 12.5: The construction of our camera-aligned frustum (CAF). Left; the
cone axis a⃗ and the aperture αdetermine the extension in thepositive xdirection
(δ+x ). Right; the CAF (red) is determined in camera space for two control points.

In order to bound the range of patch normals to which displacements are
applied, we compute a cone of normals for each patch. is cone is repre-
sented by an aperture angle α and cone axis a⃗. We consider the construction
of Shirmun and Abi-Ezzi [SAE93] (accurate cone) or the method of Seder-
berg and Meyers [SM88] (approximate cone); the trade-off being accuracy
versus computational cost. Since obtaining the accurate cone is relatively

116



12.3 Applying Cull Decision

costly (see Figure 12.7 le), our choice for animated patches will be the ap-
proximate version. e accurate cone may be still be used for static objects
where the cone can be precomputed.

We also ĕnd bounds on the scalar displacement values and require themax-
imum Dmax to be positive (or zero) and the minimum Dmin be negative (or
zero). e displacement bounds, the cone axis a⃗, and aperture α, are used
to extend the CAF so that it will conservatively bound the displaced patch.
For each camera space coordinate, we compute positive and negative ex-
tensions as follows (see Figure 12.5 le):

if(⃗ax ≥ cos(α))
δ+x = 

else
δ+x = max(cos(arccos(⃗ax) + α), cos(arccos(⃗ax)− α))

if(−a⃗x ≥ cos(α))
δ−x = 

else
δ−x = max(cos(arccos(−a⃗x) + α), cos(arccos(−a⃗x)− α))

is allows us to compute a minimum and maximum bound for each con-
trol point:

Pmax = P+ δ̂
+

x = P+max(Dmax · δ+,−Dmin · δ−)
Pmin = P− δ̂

−
x = P−max(Dmax · δ−,−Dmin · δ+)

Pmax and Pmin deĕneAABBs for each control point and determine theminZ
value, i.e., the CAF front plane. In order to construct the CAF, the corner
points of all AABBs are projected on the CAF front plane (see Figure 12.5,
right). Finally, the CAF is transformed into screen space by projecting the
four corner points of its front plane. Visibility for the screen space bound-
ing box is determined the same way as described in Section 12.3.2. Both
occlusion and view frustum culling beneĕt from the tight CAF bounds.

117



CHAPTER 12 Patch-Based Occlusion Culling for Hardware Tessellation

Note that for a given cone of normals the CAF provides an optimal screen
space bound. Figure 12.6 shows the difference between our bounds and
state-of-the-art previous work using both the same cone.

Figure 12.6: Different bounding methods for displaced surfaces visualizing ob-
ject (purple) and screen space (black quads) bounds: OOBB (object-oriented
bounding box [MHTAM10]), CAF (ours) and a comparison between OOBB (red)
andCAF (yellow); bothusing the approximate coneof normals. Our boundsgen-
eralize axis-aligned screen space bounds and thus provide optimal results for a
given cone of normals.

12.4 Implementation Details

Our algorithmwas implemented usingDirectX 11withHLSL shaders. Since
patches are tagged either visible or occluded, a binary Ęag is sufficient to de-
ĕne visibility status. A second binary Ęag is required to mark a patch as
newly-visible, to be rendered in the next draw call. Both Ęags are combined
in a per object texture that contains one value for each patch. Cull decisions
are determined in a compute shader that runs one thread per patch, with
the results being stored in the previously mentioned texture. is texture
is then accessed in the constant hull shader, where patch culling is applied
by setting respective tess factors to zero. is turned out to be faster than
computing cull decisions directly in the hull shader. We attribute the poor
constant hull shader performance to the fact that there is only a single con-
stant hull shader thread running per warp. Since there is no measurable

118



12.5 Results

context switch overhead between rendering and compute in DirectX 11,
we also use compute shaders to construct the Hi-Z map.

12.5 Results

All experimental results were made using an NVIDIA GeForce GTX 480.
Timings are provided in milliseconds and account for all runtime overhead
except for display of theGUIwidgets, text rendering, etc.. In order to reĘect
a real application use case, back-face culling is always turned on to explicitly
measure computations done by hardware tessellation and costs associated
with front-facing fragments.

12.5.1 Cull Computations

Our algorithm requires passes for drawing, determining visibility, and Hi-
Z map construction. Figure 12.7 le shows the runtime of the culling ker-
nels for different patch counts. Culling time scales linearly with respect
to the number of patches. e non-displaced surface (NoDisp), the sim-
ple uniform frustum extension (Full) and the approximate cone of normals
(ACoN) kernel are approximately the same cost, while the accurate cone
of normals bounding frustum extension kernel (CoN) is about an order
of magnitude slower. ese results suggest that the ACoN kernel is the
best choice for dynamic displaced surfaces, since its slightly lower effec-
tiveness compared to the CoN kernel (see Section 12.5.2), is offset by its
signiĕcantly lower cost. In fact the CoN kernel is not suitable for animated
patches since rendering the patches is cheaper in most cases than the cull
kernel execution. e corresponding kernels using the bounds of Munker-
berg et al. [MHTAM10] have about the same cost (±%), however, their
cull rate is always lower (see Table 12.1).

e performance of the Hi-Z map construction for various screen resolu-
tions is shown in Figure 12.7 right (the depth buffer is down sampled to
a size of  ×  pixels). A large portion the Hi-Z map computation time is

119



CHAPTER 12 Patch-Based Occlusion Culling for Hardware Tessellation

0.01

0.04

0.16

0.64

2.56

10.24

40.96

5K 20K 80K 320K 1.28M

C
u

ll
ti

m
e

 i
n

 m
s
 

Number of Patches 

Cull Kernel Execution Time 

NoDisp Full ACoN CoN

0

0,1

0,2

0,3

1920x1080 1024x1024 512x512

B
u

il
t 

T
im

e
 i

n
  
m

s 

Screen Resolution 

Hi-Z Map Built Time 

Depth Buffer Bind Compute

Figure 12.7: Left: execution times for different culling kernelswith varyingpatch
count. Having no displacements (NoDisp), uniform bounding volume exten-
sion (Full), and considering approximate cone of normals (ACoN) takes about
the same amount of time, while using the true cone (CoN) is signiöcantly more
expensive. Right: Hi-Z map construction times for different screen resolutions.
Timings are split by binding the depth buffer (depth stencil view) and running
the Hi-Z build kernel.

consumed binding the current depth buffer. Our speculation is that binding
the depth buffer causes a copy operation due to the driver/vendor speciĕc
internal depth buffer representation. Further, the Hi-Z map creation is in-
dependent of the number of patches and is therefore a constant factor in
our culling pipeline.

While our method executes both cull and Hi-Z map construction kernels,
the time required by our algorithm for a scene with 80K patches was less
than a millisecond. Depending on the cull rates we expect a payoff even at
low surface evaluation costs (see Section 12.5.2 and 12.5.3).

12.5.2 Culling within Individual Objects

Since we perform culling on a per patch basis, we can apply our algorithm
within individual models. In order to obtain meaningful cull rate measure-
ments, we determine average cull rates by using 1K different cameras views
respectively. Each view contains the entire object so that no patches are

120



12.5 Results

Figure 12.8: Test models: Killeroo and Big Guy (non-displaced; 2.9K and 1.3K
patches);Monster Frog and Cow Carcass (displaced; 1.3K and 1.2K patches).

view frustum culled. As test objects we use both non-displaced and dis-
placed models.

Non-displaced models:
enon-displaced version of our algorithm is applied on two representative
models; Killeroo and Big Guy (see Figure 12.8 le). Our algorithm achieves
an average cull rate of .% and .% respectively compared to our
state-of-the-art back-patch culling [LNE11] that culls .% and .% of
the patches. However, our method will cull signiĕcantly more patches with
increased depth complexity (see Section 12.5.3), since back-patch culling
algorithms cannot take advantage of inter object/patch occlusions. Note
that the per patch computational cost of back-patch culling (for dynamic
models) is an order of magnitude higher than ours. e effectiveness of our
scheme also increases as patch size is decreased. For instance, if we subdi-
vide (a 1-4 split) Killeroo and Big Guy patches (5.8K and 11.6K patches) the
cull rate increases to .% and .% respectively.

Displaced models:
To test our algorithmonmodels with displacementmaps, we used theMon-
ster Frog and the Cow Carcass model (see Figure 12.8 right). e culling
rates using different cull kernels are depicted in Table 12.1. As expected,
the uniform bounding shape extension (Full) has the lowest cull rate. Tak-
ing the approximate cone of normals into account signiĕcantly improves
the cull rate. Using the accurate cone of normals (CoN) provides an addi-
tional improvement. However, the difference between ACoN and CoN is
smaller than between Full and ACoN.

121



CHAPTER 12 Patch-Based Occlusion Culling for Hardware Tessellation

OOBB CAF
Full ACoN CoN Full ACoN CoN

Frog 10.5% 12.1% 14.0% 14.4% 17.0% 18.4%
Frog 17.1% 25.1% 26.4% 22.8% 29.4% 30.9%
Cow 10.1% 14.1% 15.6% 14.5% 17.6% 18.7%
Cow 17.8% 27.9% 29.1% 24.0% 31.2% 32.7%

Table 12.1: Average cull rates for displaced models;  denotes the respective
model after one level of subdivision (i.e., having four timesmore patches). While
OOBB is our method using the bounds by Munkerberg et al. [MHTAM10], CAF
stands for our camera-aligned frustum.

Furthermore, the camera-aligned frustum (CAF) is more effective than the
object-oriented bounding box (OOBB)due to its better screen space bounds.
Since the cost of the respective kernels is equal, we conclude that it is always
better to use the CAF.

Note that these tests used simple models with a relatively small number
of patches. As shown in Table 12.1, an increased patch count yields a sig-
niĕcantly higher cull percentage. is results from better bounds on the
displacement scalars and smaller patch sizes (small patches are more likely
to be occluded).

12.5.3 General Culling

Culling for scenes:
In Section 12.5.2 we considered culling within individual objects. However,
more realistic applications involve scenes with multiple objects consisting
of both triangle and patch meshes. Two simple example scenes are shown
in Figure 12.1 (the ACoN kernel is used for displaced models). e ĕrst
scene contains 27K patches and we achieve cull rates of .% and .%
for the views shown in Figures 12.1(a) and 12.1(b) respectively. Rendering
is sped up by a factor of . and ., respectively (using a tess factor of ). As
expected, the higher the depth complexity, the more patches can be culled.
Our method also beneĕts from triangle mesh occluders as shown in our
second test scene (5.5K patches and 156 triangles). We achieve cull rates

122



12.5 Results

of .% and .% for the views shown in Figures 12.1(c) and 12.1(d).
Render time is reduced by a factor of . and . (using a tess factor of ).
is demonstrates our algorithm's viability for game levels containing an-
imated characters rendered by hardware tessellation within triangle mesh
environments. In such a scenario per object culling methods would not be
suitable since computing the bounding box geometry of an object on-the-
Ęy is costly and ineffective (looping over all control points is required). Hi-
erarchical approaches (e.g., clustering patches) would be also inappropriate
since hierarchy updates create signiĕcant overhead.

Payoff:
In real applications the efficiency of a culling algorithmwill determinewhen
culling becomes beneĕcial. is depends on patch evaluation cost, scene
composition, and viewing position. By quantifying patch evaluation cost,
we can provide a general statement (i.e., independent of a speciĕc scene
composition) about the cull rate needed to amortize the cost of ourmethod.
For this analysis we use relatively inexpensive bicubic Bézier patches; more
expensive to evaluate patches will beneĕt even more from culling.

Let RT represent the time it takes to render all patches assuming no culling.
Let RT represent the time it takes to render all patches with tess factor
set to zero; this would be the draw time if all patches were culled. Finally,
let CT represent the time it takes to perform the culling tests. We do not
include the cost of Hi-Z map generation since it is constant and becomes
negligible for a moderately large number of patches. For a cull rate of x,
our culling pipeline (see Section 12.2) will have the following patch related
costs: a draw call that consists of rendering the non-culled patches (( −
x) · RT) including the culled patches with tess factor set to zero (x · RT);
plus the cull test time (CT); plus the cost of rendering all patches with a tess
factor of zero (RT) since patch rendering is applied in two passes. Note that
the cost of newly-visible patches is accounted for in the RT term. In order
to determine the breakeven point (i.e., when culling becomes a win), we
compare the render time for our culling method (LHS) to that of rendering
without culling (RHS) in the following equation:

(− x) · RT+ x · RT + CT+ RT = RT

123



CHAPTER 12 Patch-Based Occlusion Culling for Hardware Tessellation

0%

20%

40%

60%

80%

100%

1 4 7 10 13 16

R
e

q
u

ir
e

d
 C

u
ll

ra
te

  

Tessellation Factor 

Cull Break Even Point (ACoN) 

0%

5%

10%

15%

20%

25%

30%

0° 1° 2° 3° 4° 5° 6° 7° 8° 9° 10°

C
u

ll
 R

a
te

 

Rotation per Frame (degree) 

Temporal Coherence 

Figure 12.9: Left: required cull rates to make culling beneöcial for different tess
factors using the ACoN kernel. Culling becomes a win above a tess factor of  at
a cull rate of .%. Right: average cull rates using the Big Guymodel for differ-
ent speeds of rotation around the z-axis. Even for a large temporal change, our
algorithm's cull rate is only slightly affected.

Solving for x provides the breakeven point:

x =
RT + CT
RT− RT

Since we can measure RT at a given tess factor as well as RT, and CT for
bicubic patches, we can create a graph for the culling breakeven points (see
Figure 12.9 le). e graph plots the resulting cull rate x as a function of tess
factor using the ACoN cull kernel. Graphs for the NoDisp and Full kernel
are almost equal to that of ACoN. e CoN kernel, however, does not pay
off until a tess factor of  with a cull rate of over %. Since the cull rate of
CoN is only slightly better, but its costs are an order of magnitude higher
than ACoN, the ACoN kernels generally provides better performance. An
application for CoNwould be static (non-animated) objects where the cone
of normals can be precomputed.

Temporal Coherence:
In order to measure the effects of reduced temporal coherence on our algo-
rithm, we rotate the Big Guymodel around its z-axis using different speeds
of rotation (see Figure 12.9 right). We choose rotations for this test as it

124



12.5 Results

is worst-case in terms of violating temporal visibility coherence. Even for
large view point changes, the cull rate is only slightly affected. In our exam-
ple the cull rate drops from .% (no movement) to .% (rotation at a
speed of ◦ per frame). While we expect extreme scene motion to reduce
cull rates, we note that due to the conservative nature of our algorithm, no
visible patches will be missed.

Adaptive tessellation:
An important advantage of the hardware tessellation pipeline is the ability
to assign tess factors to individual patches dynamically. While this can re-
duce tessellation costs signiĕcantly, an additional constant amount of per
patch computation is required to determine these tess factors. Within the
context of our cullingmethod, thismeans that we can avoid tess factor com-
putations for culled patches. However, since adaptive tessellation tends to
assign smaller tess factors to potentially culled patches, there is less room for
saving tessellation costs. In order to evaluate the culling efficiency of our al-
gorithm when using adaptive tessellation, we use a simple camera distance
based tess factor estimate (similar to the DetailTessellation11 sample of the
DirectX SDK). For the scene and camera setup of Figure 12.1(a) we achieve
roughly the same visual quality at render times of . ms (w/o culling) and
. ms (w/ culling; ACoN), respectively. us, our method reduces render
time by about .%. Please note that more sophisticated adaptive tess fac-
tor estimates (e.g., curvature based) would favor our algorithm even more
due to the extra tess factor computation costs. For the same setup using the
view of Figure 12.1(b), where we have only intra-object occlusion (cull rate
of .%), our culling method does not pay off; i.e., about % slower than
w/o culling. In order to avoid such a situationwhere ourmethod's overhead
is not amortized by savings, we suggest disabling culling for selected mod-
els. is decision can be made for each model independently. For instance,
one could compute a single adaptive tess factor per model (e.g., model cen-
troid to eye distance); if that tess factor is less than a particular threshold
(see Figure 12.9 le for payoff), do not apply culling. Per patch tess factors
can be still assigned aerwards to non-culled patches.

Another option for adaptive tessellation is to compute a uniform tess factor
for each model at runtime. at would allow balancing costs and gains for

125



CHAPTER 12 Patch-Based Occlusion Culling for Hardware Tessellation

each model individually, and provide a decision whether or not to apply
culling.

12.6 Conclusion

We have presented a simple, yet effective algorithm for culling occluded
bicubic patches for hardware tessellation. We used bicubic Bézier patches
due to their simplicity and popularity. However, ourmethod can be applied
with different types of patches such as PN-Triangles [VPBM01], Gregory
patches [LSNC09] or bicubic B-spline patches obtained from a Catmull-
Clark subdivision mesh [NLMD12]. All that we require are methods to
bound patch geometry, and ĕrst partial derivatives (to determine an ap-
proximate cone of normals).

Our results show that our culling method performs well on current hard-
ware involving only minimal overhead. us, culling is effective even for
simple scenes (e.g., single objects) and small tess factors (see Figure 12.9).
In addition, our patch-based culling algorithm can easily be combined with
previous per object occlusion culling methods that are applied on triangle
meshes. We believe that our method is ideally suited for real-time applica-
tions that leverage the advantages of hardware tessellation.

126



PART IV

Collision Detection





CHAPTER 13

Introduction

Hardware tessellation allows efficient rendering of smooth surfaces, includ-
ing subdivision surfaces, by processing patch primitives in parallel as shown
in Chapters 4, 5, 8. On top of a smooth base surface displacement maps
can be added to provide high-frequency geometric detail. Surfaces can be
animated by updating only the patch control points while displacement val-
ues remain constant. Another beneĕt is that the patch tessellation is set at
computed at runtime. at allows the realization of various level-of-detail
schemes such as shown in Chapter 4.7 and 8.4. However, all these advan-
tages make collision detection a challenging task since geometry is gener-
ated on-the-Ęy by the GPU. Transferring geometry to the CPU would in-
volve signiĕcant memory I/O and is not feasible in real-time applications.
us, traditional collision detection approaches that maintain a hierarchy
of proxy primitives are too costly and provide only loose results. To the best
of our knowledge, providing a satisfactory collision detection scheme for
hardware tessellation has not previously been done. erefore, we present
an approach in Chapter 15 that performs collision detection for hardware
tessellation entirely on the GPU [NSSL13].

129





CHAPTER 14

Previous Work

Collision detection:
An essential part of physics simulations (for instance in games [Mil07]) is
the ability to detect collisions. Typically, a hierarchy of proxy primitives is
maintained in order to facilitate efficient pairwise collision tests. Surveys of
traditional approaches are shown in [JTT01] and [Eri04].

Bounding and culling displaced patches:
A key feature of our approach presented in Chapter 15 is to reduce the
number of possibly colliding patches using patch-based culling. erefore,
patch normals need to be bound. is can be achieved by computing an
accurate [SAE93] or approximate [SM88] cone of normals. Munkerberg et
al. [MHTAM10] and our patch-based culling algorithm depicted in Chap-
ter 12 make use of the approximate variant since resulting quality is similar
but computational costs are an order of magnitude smaller. While we use
the same normal bounds, the application of collision detection is different
since we need to cull against a shared volume given as a bounding box.

Real-time voxelization:
A binary voxelization is a memory efficient representation to distinguish
between empty and occupied space. It can be obtained in different ways
on modern GPUs in real-time [DCB∗04], [ED06], [ED08]. More recent
approaches also provide for conservative voxelizations [SS10]. However, a
conservative method does not ĕt our needs since it would be computation-
ally too expensive. Instead, our collision detection algorithm relies on the
more practical solid binary voxelization proposed by Schwarz [Sch12]. In
contrast to his approach, we do not voxelize closed meshes; therefore we
modify the approach accordingly.

131





CHAPTER 15

Collision Detection for Hardware
Tessellation

15.1 Introduction and Algorithm Overview

In this chapter we present a novel approach that performs collision detec-
tion for hardware tessellation. is is particularly challenging since surface
geometry is based on dynamic tessellation factors and displacement values.
We tackle this problem by considering the geometry that is actually used
for rendering. e ĕrst step of our approach is to test two objects for col-
lision by testing their oriented bounding boxes (OBBs) for intersection. If
there is no intersection, there can be no collision (early exit); otherwise we
compute the intersection of the OBBs. Next, we determine all patches that
lie within this shared volume by performing an inclusion test. Included
patches are then voxelized into identical grids, one for each object. Finally,
the resulting voxelizations of both objects are compared to determine col-
lisions. We can also determine collision positions and their normals based
on these voxelizations. We provide an extension of our method that will re-
port colliding patch IDs and u, v coordinates. ese can be used to evaluate
object patches at collision points for accurate physics handling.

For simplicity, we demonstrate our approach using bicubic Bézier patches.
However, our algorithm can be applied to any patching scheme that pro-
vides patches whose derivatives can be bound; e.g., [LSNC09], [NLMD12].
An overview of our algorithm pipeline of is shown in Figure 15.1. Our
experimental results show that a collision test between two objects consist-
ing of thousands of patches can be performed in less than a millisecond
(see Section 15.1). is is well within the processing budget of real-time

133



CHAPTER 15 Collision Detection for Hardware Tessellation

Collision Test Collision Test 

Binary Voxelization Binary Voxelization 

Patch Culling against Intersection Patch Culling against Intersection 

Object Bounds Intersection Object Bounds Intersection 

Figure 15.1: Overview of our collision detection approach.

applications such as video games. While we currently use our own rudi-
mentary physics simulation for demonstration, our approach could be also
integrated into any physics engine [Mil07], [BB07].

To sum up, our approach allows for

• real-time collision detection for hardware tessellation,

• supports animated objects with displacements.

15.2 Collision Candidates

A crucial part of our approach is to ĕrst reduce the number of potentially
colliding patches. erefore, we ĕrst consider the collision of the respective
object bounds. Since we use bicubic Bézier patches we are able to obtain
bounds using the convex hull property. Note, we could also use other sur-
face types such as B-splines, subdivision surfaces, or triangle meshes. We
compute the OBBs by applying principal component analysis (PCA) on the
patch control points [Jol05].

For the collision test between two objects we then determine the intersec-

134



15.2 Collision Candidates

(a) (b)

(c) (d)

Figure 15.2: Simple test setup visualizing our approach with the Monster Frog
moving towards the Chinchilla (a). At one point the OBBs of both objects inter-
sect (b, red box) and we voxelize the containing geometry (c). This allows us to
determine the collision point and corresponding surface normals (d). Patches
shown in the last image could not be culled against the intersecting OBB and
thus are potential collision candidates contributing to the voxelization.

tion of the two corresponding OBBs. If there is no intersection, there is no
collision (early exit). Otherwise, we obtain a set of contact points by in-
tersecting the faces of one box with the edges of the other and vice versa.
OBB corner points that are inside the other box are also considered to be
contact points. We then compute a new OBB based on the obtained con-
tact points; again by using PCA. In some cases we may need to enlarge the
intersecting OBB in order for our binary voxelization to work properly (see
Section 15.3). For at least one pair of opposite faces, one face must be out-
side of one input object OBB and the opposite face must be outside of the

135



CHAPTER 15 Collision Detection for Hardware Tessellation

other OBB (see Figure 15.3). We select the OBB axis that minimizes this
enlargement.

Figure 15.3: OBBs of two objects (black boxes, left) and joint volume (dotted red
box). Extension of joint volume to ensure that one face of is outside of the OBB
(right).

A compute kernel is used to determine patches that are included in the in-
tersecting OBB in parallel. Each thread processes one patch and computes
its OBB.is is done by transforming patch control points into the space of
the intersecting OBB; in that space the OBB is the unit cube. As a result we
obtain axis-aligned bounding boxes (AABB) in the respective OBB space
per patch. If an AABB is outside of the unit cube a patch can be culled.
However, we also need to incorporate displacements into the patch AABB
computation. For each patch we compute a cone of normals that bounds
the patch normals. erefore, an exact [SAE93] or approximate [SM88] but
also conservativemethod can be taken into account. We rely on the approx-
imate variant since its computation is an order of magnitude less expensive
and provides similar results. Given the cone axis a⃗ and cone aperture α
we enlarge the bounding box of a patch according to the minimum Dmin
and maximum Dmax displacement value; similar to our occlusion culling
approach (see Section 12.3.3):

if(⃗ax ≥ cos(α)) δ+x = 
else δ+x = max(cos(arccos(⃗ax) + α), cos(arccos(⃗ax)− α))

if(−a⃗x ≥ cos(α)) δ−x = 
else δ−x = max(cos(arccos(−a⃗x) + α), cos(arccos(−a⃗x)− α))

136



15.3 Voxelization

is allows the modiĕcation of patch AABBs:

AABBmax = AABB′
max +max(Dmax · δ+,−Dmin · δ−)

AABBmin = AABB′
min −max(Dmax · δ−,−Dmin · δ+)

We precompute displacement extrema Dmin and Dmax per patch since dis-
placements are considered to be static.

Note that it would be feasible to orient patch bounding boxes based onpatch
normals [MHTAM10]. However, we obtain better results if both patch and
object intersectingOBB share the same axes. In the end, we are able to iden-
tify all patches that are within the common bounding volume intersection.
Only those patches need to be considered for collision detection; we mark
those bymaintaining a Ęag list that contains a single binary value per patch.

15.3 Voxelization

e key idea of our collision test is to voxelize the rendering geometry of
the current frame. For two objects those patches lie within the intersection
of the objects' bounding boxes (see Section 15.2). We then setup an orthog-
onal camera matrix that spans that space and perform a solid binary vox-
elization. erefore, we use a modiĕed version of the algorithm proposed
by Schwarz [Sch12]. e voxelization is performed within the rasterization
pipeline and can be applied to any object with or without displacements.
Since DirectX 11 (or OpenGL 4.0 or above) allows scatteredmemory writes
in the pixel shader there is no need for a render target. In addition, no depth
buffer is required as all fragments contribute to the voxelization. e voxel
grid is represented as a linear buffer of 32 bit integer values allowing us to
store 32 voxels per entry. In the pixel shader we compute the voxel index
depending on the x, y and depth value. For each fragment atomic XOR-
operations are used to Ęip all voxels behind that fragment. Since this is an
integer operation, we process 32 voxels per instruction. In the end, only
voxels within the volume will remain set resulting in a solid voxelization.

137



CHAPTER 15 Collision Detection for Hardware Tessellation

In contrast to the binary voxelization by Schwarz, our potentially collid-
ing patches may not form a closed surface. erefore, we construct the
intersecting OBB to have at least one face that lies completely outside of the
original object OBB (see Section 15.2). us, we can ĕll voxels towards the
opposite face. We use two different kernels to perform the solid voxeliza-
tion and ĕll voxels backwards or forward, respectively. Pseudo code of our
forward and backward voxelization kernels is shown below:

//Forward solid voxelization
addr = p.x * stride.x + p.y * stride.y + (p.z >> 5) * 4;
atomicXor(voxels[addr], 0xffffffff << (p.z & 31));
for (p.z = (p.z | 31) + 1; p.z < gridSize.z; p.z += 32)
{

addr += 4;
atomicXor(voxels[addr], 0xffffffff);

}

//Backward solid voxelization
addr = p.x * stride.x + p.y * stride.y + (p.z >> 5) * 4;
atomicXor(voxels[addr], ~(0xffffffff << (p.z & 31)));
for (p.z = (p.z & (~31)); p.z > 0; p.z -= 32)
{

addr -= 4;
atomicXor(voxels[addr], 0xffffffff);

}

Note that back-face culling must be turned off for the voxelization. Perfor-
mance scales linearly with the number of patches that need to be voxelized
making patch culling as described in Section 15.2 essential. e resolution
of the voxel grid is adaptive and computed based on the size of the intersect-
ing OBB. However, we require the resolution in Z-direction to be amultiple
of 32 to align with four byte integer values.

e use of a solid instead of a surface voxelization is essential. It prevents
from missing collisions where objects entirely penetrate a surface within
one time step. In addition, a resulting voxelization that is close to the orig-

138



15.4 Collision Detection

inal mesh can be obtained with a single render pass. In some cases we may
loose one voxel width around the visual hull due to non-conservative ras-
terization.

15.4 Collision Detection

We perform collision detection based on binary voxelizations as shown in
Section 15.3. Our basic approach is to determine collision positions and
corresponding normals based on the voxelization. In addition, we propose
an extended variant that provides patch IDs and u, v coordinates of collision
points.

15.4.1 Basic Collision Test

Determining collisions given two solid voxelizations that occupy the same
space can be obtained by performing pairwise voxel comparisons. ere
is a collision if equivalent voxels are set. Since our voxel representation is
binary, we can perform 32 voxel comparisons using a single bitwise AND-
operation of the two corresponding integer values. erefore, we use a com-
pute kernel with one thread for each integer value of the linear voxel buffer
(each value contains 32 binary voxel entries). In addition to collision po-
sitions, we obtain corresponding normals based on voxel neighborhoods.
e normal is determined by using a weighted average of the vectors be-
tween the current voxel and its  neighbors; if a voxel neighbor is not set,
the corresponding vector is excluded from the average computation. Colli-
sions are written into a GPU buffer using atomics that can be accessed from
the CPU.

15.4.2 Extended Collision Test

e extended collision test ĕrst executes the basic variant. en another
pass is used to obtain patch IDs and u, v coordinates of collision points.

139



CHAPTER 15 Collision Detection for Hardware Tessellation

erefore, we use an orthographic camera setup that conservatively con-
tains the intersecting OBB and points in the direction of the average ap-
proximate collision normal obtained from the basic collision test. us, a
maximum number of fragments is generated near collision points. Passing
patch IDs and u, v coordinates to the pixel shader allows us to store these
in a global linked list with an atomic counter (i.e., append buffer in DirectX
11). is allows us to accurately evaluate surface geometry on theCPU at all
collision points and to determine corresponding attributes such as surface
normals. In order to obtain collision attributes for both colliding objects,
we must perform this test twice; once for each object while testing against
the voxelization of the other object, respectively.

15.5 Results

Our implementation uses the DirectX 11 graphics pipeline and compute
shaders. Performancemeasurementsweremadeusing anNVIDIAGeForce
GTX 480 and an Intel Core i7 at 2.80 GHz. In our examples we use the same
tessellation density for collision detection that is used for rendering.

Figure 15.2 shows a simple test scene with two objects. e Monster Frog
(w/ displacements) is moving (a) towards the Chinchilla until we detect a
collision (b). We also visualize the voxelization that we use for collision
computation (c). In addition, patches that could not be culled against the
intersecting OBB and the obtained collision point with its corresponding
surface normals is shown (d). We used a relatively low voxel grid resolution
for visualization purposes in this ĕgure. For all our tests we use a volume
of  adapted anisotropically to the intersecting OBB requiring no more
than KB of GPU memory.

In order to validate the practicality of our approach, we implemented a
rudimentary physics engine. We perform physics computations based on
the collisions and corresponding attributes of our extended collision test.
Figure 15.4 shows two simple examples. In the ĕrst sequence a torus is
falling until it hits its counterpart, then rotating slightly, hitting the other

140



15.6 Conclusion

Figure 15.4: Basic physics using our collision detection approach. In each se-
quence one object is falling onto another.

torus again and bouncing off. In the second sequence aMushroom is falling
on theMonster Frogmodel with only a single hit point. Note that there are
two normals at collision points (one for each object), however, the visu-
alization of the normals in Figure 15.4 is occluded by the larger objects,
respectively.

Performance results of our approach for two setups are shown in Table 15.1.
With the presented approach, we are able to perform both the basic and the
extended collision test including all overhead in less than a millisecond.

15.6 Conclusion

We have presented a method for real-time collision detection of dynamic
hardware-tessellated objects with displacements. Our approach consid-
ers the rendering geometry of the current frame and runs entirely on the
GPU. We have shown that collision tests can be performed with minimal
overhead and that our method can be used for real-time physics. We can

141



CHAPTER 15 Collision Detection for Hardware Tessellation

Frog / Chinchilla Frog / Mushroom
Patches 1292 / 4270 1292 / 744
Tess Factor 4 8 4 8

Draw 0.065 0.169 0.024 0.067
OBB Intersect 0.008 0.008 0.011 0.011
Patch Culling× 0.016 0.016 0.012 0.012
Voxelization× 0.059 0.092 0.037 0.053
Collision 0.117 0.117 0.114 0.114
Collision Attributes× 0.210 0.262 0.222 0.232

Sum Test Basic 0.275 0.341 0.223 0.255
Sum Test Extended 0.695 0.865 0.667 0.719

Table 15.1: Performancemeasurements in milliseconds of our approach for the
two test scenes (see Figures 15.2 and 15.4). We provide numbers for rendering
(Draw) and for each step of our collision pipeline (OBB Intersect, Patch Culling,
Voxelization, Collision, CollisionAttributes). In addition, we show the overall per-
formance for a pairwise collision test for both the basic and extended variant of
our approach.

perform both basic collision tests and extended collision tests that ĕnd at-
tributes at collision positions. We have also shown that the overhead of our
approach for objects containing thousands of patches is less than amillisec-
ond. is makes our scheme ideally suited for real-time games allowing
physics engines to achieve a realistic behavior.

142



CHAPTER 16

Conlusion

In this thesis we have presented different techniques for real-time rendering
subdivision surfaces (see Chapters 4, 5). We not only provide approaches
for rendering the subdivision surfaces but also show how high-frequency
detail can be efficiently represented by using a scalar displacement func-
tion (see Chapter 8). In addition, our culling techniques increase perfor-
mance by avoiding unnecessary surface evaluation and shading computa-
tions (see Chapters 11, 12). Hardware-tessellated objects can also interact
with virtual scene environments using our collision detection approach (see
Chapter 15). In the end, ourmethods provide a comprehensive solution for
using hardware tessellation in real-time applications. ose applications
range from authoring tools for movies to video games. In particular, we
consider our approaches relevant for dynamic objects such as characters.
Our techniques also close the gap between movies and games since high-
quality subdivision content from movies can now be utilized in games. On
the other side interactive authoring tools help artists to create movie con-
tent and thus reduce ĕlm production costs.

Moreover, we assume that future hardware generations will be similar to
current hardware in a sense that there will be even more parallelism. We
argue that physical limits of processor clock speed endorse parallel architec-
tures in order to obtain more Ęoating point operations per seconds. at
makes keeping caches synchronous challenging and favors compute over
memory I/O. Since modern GPUs are such platforms and hardware tessel-
lation optimizes performance on this, we expect our approaches to be even
more relevant on future hardware generations.

To sum up, we believe that future generations of video games and author-
ing tools will beneĕt from the presented techniques by utilizing massively

143



CHAPTER 16 Conlusion

parallel hardware architectures. For instance, parts of our work have been
realized by Pixar as the open source project Open Subdiv [Pix12]. As a re-
sult of our work, our subdivision surface rendering approach is now being
used as a plugin for Autodesk Maya [Auta] and Autodesk Mudbox [Autb].

Outlook

While we have presented techniques for the rendering of displaced subdi-
vision surface, we did not address the creation of suitable content. How-
ever, the creation of such speciĕc content requires appropriate algorithms
and tools, particularly designed for non-expert users. For instance as out-
lined in Section 8.2.1, the automated and artifact-free conversion process
of polygonal meshes to displaced subdivision surfaces remains an open re-
search problem. In addition, a compelling solution to handle vector dis-
placements on top of subdivision surfaces efficiently would be beneĕcial.
at would facilitate non-uniform sampling of displacements within patch
domains and would increase the modeling Ęexibility over scalar displace-
ments.

Another interesting research area is the rendering of subdivision surfaces
on heterogeneous hardware architectures. In particular, mobile devices
such as smartphones or tablet computers have become more and more rel-
evant for content consumption and video gaming in the recent years. Pro-
viding suitable algorithms that facilitate high-quality rendering on those
tile-based rendering architectures with limited computational capabilities
is challenging. We also expect that cloud and crowd computingwill provide
further research opportunities in the context of real-time rendering.

144



Bibliography

[Auta] A: Maya. http://usa.autodesk.com/maya.

[Autb] A: Mudbox. http://autodesk.com/mudbox.

[BB07] B A., B T.: Evaluation of real-time physics sim-
ulation systems. In Proceedings of the 5th international con-
ference on Computer graphics and interactive techniques in
Australia and Southeast Asia (2007), ACM, pp. 281--288.

[Ber04] B M.: Liing Biorthogonal B-spline Wavelets. Geo-
metric Modeling for Scientiĕc Visualization (2004), 153.

[BFH04] B I., F K., H P.: GPUBench: Eval-
uating GPU performance for numerical and scientiĕc ap-
plications. In Proceedings of the 2004 ACM Workshop
on General-Purpose Computing on Graphics Processors
(2004), p. 63.

[BL08] B B., L D.: Ptex: Per-Face Texture Mapping
for Production Rendering. Computer Graphics Forum 27, 4
(2008), 1155--1164.

[Bli78] B J.: Simulation of wrinkled surfaces. ACM SIGGRAPH
Computer Graphics 12, 3 (1978), 286--292.

[Bli03] B J.: Lines in space. 1. e 4D Cross Product. Computer
Graphics and Applications, IEEE 23, 2 (2003), 84--91.

[BS02] B J., S P.: Rapid evaluation of Catmull-Clark
subdivision surfaces. In Proceedings of the seventh inter-
national conference on 3D Web technology (2002), ACM,
pp. 11--17.

145



Bibliography

[Bun05] B M.: Adaptive Tessellation of Subdivision Surfaces
with DisplacementMapping. In GPUGems 2. 2005, pp. 109-
-122.

[BWPP04] B J., W M., P H., P W.:
Coherent hierarchical culling: Hardware occlusion queries
made useful. Computer Graphics Forum 23, 3 (2004), 615-
-624.

[Cat74] C E.: Subdivision algorithms for the display of curved
surfaces. PhD thesis, e University of Utah, 1974.

[CC78] C E., C J.: Recursively generated B-spline sur-
faces on arbitrary topological meshes. Computer-Aided de-
sign 10, 6 (1978), 350--355.

[CCC87] C R., C L., C E.: eReyes image ren-
dering architecture. ACM SIGGRAPH Computer Graphics
21, 4 (1987), 95--102.

[Cn08] C I.: Tessellation of Subdivision Surfaces
in DirectX 11. Gamefest 2008 presentation, 2008.
https://developer.nvidia.com/content/tessellation-
subdivision-surfaces-directx-11.

[COCSD03] C-O D., C Y., S C., D F.: A
survey of visibility for walkthrough applications. Visualization
and Computer Graphics, IEEE Transactions on 9, 3 (2003),
412--431.

[Coo84] C R.: Shade trees. ACM SIGGRAPH Computer Graph-
ics 18, 3 (1984), 223--231.

[CT97] C S., T S.: Real-time occlusion culling for models
with large occluders. In Proceedings of the 1997 Symposium
on Interactive 3D graphics (1997), ACM, pp. 83--ff.

[DC76] D CM.: Differential geometry of curves and surfaces,
vol. 1. Prentice-Hall, 1976.

146



Bibliography

[DCB∗04] D Z., C W., B H., Z H., P Q.: Real-
time voxelization for complex polygonal models. In Com-
puter Graphics and Applications, 2004. PG 2004. Proceed-
ings. 12th Paciĕc Conference on (2004), IEEE, pp. 43--50.

[DKT98] DR T., K M., T T.: Subdivision surfaces in
character animation. In Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques
(1998), SIGGRAPH '98, ACM, pp. 85--94.

[DLG90] D N., L D., G J.: A butterĘy subdivision
scheme for surface interpolation with tension control. ACM
transactions on Graphics (TOG) 9, 2 (1990), 160--169.

[DS78] D D., S M.: Behaviour of recursive division surfaces
near extraordinary points. Computer-Aided Design 10, 6
(1978), 356--360.

[ED06] E E., D X.: Fast scene voxelization and ap-
plications. In Proceedings of the 2006 symposium on Inter-
active 3D graphics and games (2006), ACM, pp. 71--78.

[ED08] E E., D X.: Single-pass GPU solid voxeliza-
tion for real-time applications. In Proceedings of graphics
interface 2008 (2008), Canadian Information Processing So-
ciety, pp. 73--80.

[ED09] E T., D C.: Granular visibility
queries on the GPU. In Proceedings of the 2009 symposium
on Interactive 3Dgraphics and games (2009), ACM, pp. 161-
-167.

[EL10] E C., L C.: Data-parallel micropolygon ras-
terization. In Eurographics 2010 Short Papers (2010), e
Eurographics Association, pp. 53--56.

[EML09] E C., M Q., L C.: Real-time view-
dependent rendering of parametric surfaces. In Proceed-
ings of the 2009 symposium on Interactive 3D graphics and

147



Bibliography

games (2009), pp. 137--143.

[Eri04] E C.: Real-time collision detection. Morgan Kauf-
mann, 2004.

[Far96] F G.: Curves and Surfaces for Computer-Aided Geomet-
ric Design: A Practical Code. Academic Press, Inc., 1996.

[FB88] F D., B R.: Hierarchical B-spline reĕnement.
ACM SIGGRAPH Computer Graphics 22, 4 (1988), 205--
212.

[FFB∗09] F M., F K., B S., A K., M
W., H P.: DiagSplit: parallel, crack-free, adaptive
tessellation for micropolygon rendering. ACM Transactions
on Graphics (TOG) 28, 5 (2009), 150.

[FH00] FG., HD.: e essentials of CAGD. AK Peters,
2000.

[FMM86] F D., M R., M R.: Surface algorithms us-
ing bounds on derivatives. Computer Aided Geometric De-
sign 3, 4 (1986), 295--311.

[GBK06] G M., B A., K R.: Near optimal hierarchi-
cal culling: Performance driven use of hardware occlusion
queries. In Eurographics Symposium on Rendering 2006
(2006).

[GKM93] G N., K M., M G.: Hierarchical Z-buffer vis-
ibility. In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques (1993), SIG-
GRAPH '93, ACM, pp. 231--238.

[GP09] G F., P G.: Continuity mapping for multi-
chart textures. ACM Transactions on Graphics (TOG) 28, 5
(2009), 109.

[Gre74] G J.: Smooth interpolation without twist constraints.

148



Bibliography

Computer Aided Geometric Design (1974), 71--87.

[GVSS00] G I., V K., S W., S P.: Nor-
malmeshes. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques (2000), SIG-
GRAPH '00, ACM Press/Addison-Wesley Publishing Co.,
pp. 95--102.

[HAM07] H J., A-M T.: PCU: the pro-
grammable culling unit. ACM Transactions on Graphics
(TOG) 26, 3 (2007), 92.

[HAMO05] H J., A-M T., O L.: Con-
servative rasterization. In GPU Gems, vol. 2. 2005, pp. 677-
-690.

[HDD∗94] H H., DR T., D T., H M., J H.,
MD J., S J., S W.: Piecewise
smooth surface reconstruction. In Proceedings of the 21st an-
nual conference on Computer graphics and interactive tech-
niques (1994), SIGGRAPH '94, ACM, pp. 295--302.

[HKD93] H M., K M., DR T.: Efficient, fair interpo-
lation using Catmull-Clark surfaces. In Proceedings of the
20th annual conference on Computer graphics and interac-
tive techniques (1993), SIGGRAPH '93, ACM, pp. 35--44.

[HLS93] H J., L D., S L.: Fundamentals of
computer aided geometric design, vol. 1. AK petersWellesley,
MA, 1993.

[HMAM09] H J., M J., A-M T.: Auto-
matic pre-tessellation culling. ACM Transactions on Graph-
ics (TOG) 28, 2 (2009), 19.

[HMC∗97] H T., M D., C J., L M., H K.,
Z H.: Accelerated occlusion culling using shadow
frusta. In Proceedings of the thirteenth annual symposium
on Computational geometry (1997), ACM, pp. 1--10.

149



Bibliography

[Jol05] J I.: Principal component analysis. Wiley Online
Library, 2005.

[JTT01] J P., T F., T C.: 3D collision detection: a
survey. Computers & Graphics 25, 2 (2001), 269--285.

[KM94] K S., M D.: Global Visibility and Hidden
Surface Removal Algorithms for Free Form Surfaces. Tech-
nical Report TR94-063, Department of Computer Science,
University of North Carolina, 1994.

[KM96] K S., M D.: Hierarchical visibility culling for
spline models. In Graphics Interface (1996), no. 1996, Cite-
seer.

[KMDZ09] K D., M J., D S., Z D.: Real-time
creased approximate subdivision surfaces. In Proceedings of
the 2009 symposium on Interactive 3D graphics and games
(2009), ACM, pp. 155--160.

[KMGL99] K S., MD., GW., LM.: Hierarchical
back-face computation. Computers & Graphics 23, 5 (1999),
681--692.

[KML96] K S., M D., L A.: Interactive display of
large NURBSmodels. Visualization and Computer Graphics,
IEEE Transactions on 2, 4 (1996), 323--336.

[Kob00] K L.: sqrt(3)-subdivision. In Proceedings of the 27th
annual conference on Computer graphics and interactive
techniques (2000), SIGGRAPH '00, ACM Press/Addison-
Wesley Publishing Co., pp. 103--112.

[LMH00] L A., M H., H H.: Displaced subdivision
surfaces. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques (2000), SIG-
GRAPH '00, ACM Press/Addison-Wesley Publishing Co.,
pp. 85--94.

150



Bibliography

[LNE11] LC., NM., EC.: Effective back-patch
culling for hardware tessellation. In Proceedings of Vision,
Modeling and Visualization (2011), pp. 263--268.

[Loo87] L C.: Smooth subdivision surfaces based on triangles.
Master's thesis, University of Utah, 1987.

[LS08] L C., S S.: Approximating Catmull-Clark sub-
division surfaces with bicubic patches. ACM Transactions on
Graphics (TOG) 27, 1 (2008), 8.

[LSNC09] L C., S S., N T., C I.: Approximating
subdivision surfaces with Gregory patches for hardware tessel-
lation. 151.

[M∗09] M A.,  .: e opencl speciĕcation. Khronos
OpenCL Working Group 1 (2009), l1--15.

[MBW08] M O., B J., W M.: CHC++: Coher-
ent hierarchical culling revisited. Computer Graphics Forum
27, 2 (2008), 221--230.

[MHTAM10] M J., H J., T R., A-M
T.: Efficient bounding of displaced Bézier patches. In Pro-
ceedings of the Conference on High Performance Graphics
2010 (2010), Eurographics Association, pp. 153--162.

[Mic09] M C: Direct3D 11 Fea-
tures, 2009. http://msdn.microso.com/en-
us/library/ff476342(VS.85).aspx.

[Mil07] M I.: Game physics engine development. Morgan
Kaufmann Pub, 2007.

[MM02] M K., MC M.: Efficient bounded adaptive tessel-
lation of displacement maps. In Graphics Interface (2002),
Citeseer, pp. 171--180.

[MNP08] M A., N T., P J.: Fast parallel construction of

151



Bibliography

smooth surfaces frommeshes with tri/quad/pent facets. Com-
puter Graphics Forum 27, 5 (2008), 1365--1372.

[Mor01] M H.: Watertight tessellation using forward dif-
ferencing. In HWWS '01: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hard-
ware (New York, NY, USA, 2001), ACM, pp. 25--32.

[MYP08] M A., Y Y., P J.: GPU conversion of quadmeshes
to smooth surfaces. In Proceedings of the 2008 ACM sympo-
sium on Solid and physical modeling (2008), ACM, pp. 321-
-326.

[Nas87] N A.: Polyhedral subdivision methods for free-form sur-
faces. ACM Transactions on Graphics (TOG) 6, 1 (1987),
29--73.

[NL12] N M., L C.: Patch-Based Occlusion Culling for
Hardware Tessellation. In Computer Graphics International
(2012).

[NL13] N M., L C.: Analytic Displacement Mapping us-
ing Hardware Tessellation. ACM Transactions on Graphics
(TOG) 32, 3 (2013), 26.

[NLG12] N M., L C., G G.: Efficient Evaluation of
Semi-Smooth Creases in Catmull-Clark Subdivision Surfaces.
In Eurographics 2012 Short Papers (2012), e Eurograph-
ics Association, pp. 41--44.

[NLMD12] N M., L C., M M., D T.: Feature-
adaptive GPU rendering of Catmull-Clark subdivision sur-
faces. ACM Transactions on Graphics (TOG) 31, 1 (2012),
6.

[NSG12] N M., S R., G G.: Real-time simulation
and visualization of human vision through eyeglasses on the
GPU. In Proceedings of the 11th ACM SIGGRAPH Inter-
national Conference on Virtual-Reality Continuum and its

152



Bibliography

Applications in Industry (2012), ACM, pp. 195--202.

[NSS10] N M., S H., S M.: Fast indirect
illumination using Layered Depth Images. e Visual Com-
puter (Proceedings of CGI 2010) 26, 6-8 (2010), 679--686.

[NSSL13] N M., S C., S H., L C.: Real-time
Collision Detection for Dynamic Hardware Tessellated Ob-
jects. In Eurographics 2013 Short Papers (2013), e Eu-
rographics Association, p. to appear.

[Nvi08] N C.: Programming guide, 2008.

[NYM∗08] N T., Y Y., M A., G V., P J.: GPU smoothing
of quad meshes. In Shape Modeling and Applications, 2008.
SMI 2008. IEEE International Conference on (2008), IEEE,
pp. 3--9.

[PCK04] P B., C J., K S.: Seamless texture atlases.
In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing (2004), ACM, pp. 65--
74.

[PEO09] P A., E M., O J.: Parallel view-dependent
tessellation of Catmull-Clark subdivisionsurfaces. In Pro-
ceedings of the Conference on High Performance Graphics
2009 (2009), ACM, pp. 99--108.

[Pix05] P A S: e RenderMan Interface ver-
sion 3.2.1, 2005. (https://renderman.pixar.com/products/-
rispec/index.htm).

[Pix12] P: Open Subdiv, 2012.
http://graphics.pixar.com/opensubdiv.

[Rei97] R U.: A Reĕneable Space of Smooth Spline Surfaces of Ar-
bitrary Topological Genus. Journal of Approximationeory
90, 2 (1997), 174--199.

153



Bibliography

[RNLL10] R N., N V., L S., L B.: Invisible
Seams. ComputerGraphics Forum29, 4 (2010), 1489--1496.

[SAE93] S L., A-E S.: e cone of normals technique for
fast processing of curved patches. Computer Graphics Forum
12, 3 (1993), 261--272.

[SBOT08] S J., B J., O C., T N.: March of the
Froblins: simulation and rendering massive crowds of intel-
ligent and detailed creatures on GPU. In ACM SIGGRAPH
2008 classes (2008), ACM, pp. 52--101.

[SCF∗04] S T., C D., F G., N N.,
Z J., L T.: T-spline simpliĕcation and local reĕne-
ment. ACM Transactions on Graphics (TOG) 23, 3 (2004),
276--283.

[Sch12] S M.: Practical Binary Surface and Solid Voxeliza-
tion with Direct3D11. In GPU Pro3: Advanced Rendering
Techniques. AK Peters Limited, 2012, p. 337.

[Sek04] S D.: Efficient occlusion culling. In GPU Gems. 2004,
pp. 487--503.

[SG99] S O., G C.: Dynamic scene occlusion
culling. Visualization and Computer Graphics, IEEE Trans-
actions on 5, 1 (1999), 13--29.

[Shr10] S D.: OpenGL programming guide: the official guide
to learning OpenGL, versions 3.0 and 3.1, vol. 1. Addison-
Wesley Professional, 2010.

[SJP05] S L., J I., P J.: A realtime GPU subdivision
kernel. ACM Transactions on Graphics (TOG) 24, 3 (2005),
1010--1015.

[SKS13] S H., K B., S M.: Real-time Lo-
cal Displacement usingDynamicGPUMemoryManagement.
In Proceedings of the Conference on High Performance

154



Bibliography

Graphics 2013 (2013), ACM, pp. 63--72.

[SKU08] S-K L., U T.: Displacement Map-
ping on the GPU-State of the Art. Computer Graphics Forum
27, 6 (2008), 1567--1592.

[SM88] S T., M R.: Loop detection in surface patch
intersections. Computer Aided Geometric Design 5, 2
(1988), 161--171.

[Spe08] S S.: ZBrush Character Creation: Advanced Digital
Sculpting. Sybex, 2008.

[SPM∗12] S H., P M., M Q., S J., S-
M.: Multiresolution attributes for tessellated meshes.
In Proceedings of the 2012 symposium on Interactive 3D
graphics and games (2012), ACM, pp. 175--182.

[SS09] S M., S M.: Fast GPU-based Adaptive
Tessellation with CUDA. Computer Graphics Forum 28, 2
(2009), 365--374.

[SS10] SM., S H.: Fast parallel surface and solid vox-
elization on GPUs. ACM Transactions on Graphics (TOG)
29, 6 (2010), 179.

[Sta98] S J.: Exact evaluation of Catmull-Clark subdivision sur-
faces at arbitrary parameter values. In Proceedings of the
25th annual conference on Computer graphics and interac-
tive techniques (1998), SIGGRAPH '98, ACM, pp. 395--404.

[SWG∗03] S P., W Z., G S., S J., H H.:
Multi-chart geometry images. In Proceedings of the 2003
Eurographics/ACM SIGGRAPH symposium on Geometry
processing (2003), ACM, pp. 146--155.

[SZD∗98] S P., Z D., DR T., F D., K
L., L M., P J.: Subdivision for modeling and
animation. ACM SIGGRAPH Course Notes 12 (1998).

155



Bibliography

[TBB10] TN., B J., B B.: Programming for
Real-Time Tessellation on GPU. AMD whitepaper 5 (2010).

[TS91] T S., S C.: Visibility preprocessing for interactive
walkthroughs. ACM SIGGRAPH Computer Graphics 25, 4
(1991), 61--70.

[VHB87] V H B., B A.: Accurate triangulations of de-
formed, intersecting surfaces. ACM SIGGRAPH Computer
Graphics 21, 4 (1987), 103--110.

[VPBM01] V A., P J., B C., M J.: Curved PN
triangles. In Proceedings of the 2001 Symposium on Inter-
active 3D graphics (2001), ACM, pp. 159--166.

[VZ01] V L., Z D.: 4--8 Subdivision. Computer Aided
Geometric Design 18, 5 (2001), 397--427.

[Wil83] W L.: Pyramidal parametrics. ACM SIGGRAPH
Computer Graphics 17, 3 (1983), 1--11.

[WKP11] W C., K E., P A.: Fermi GF100
GPU architecture. Micro, IEEE 31, 2 (2011), 50--59.

[YKH10] Y C., K J., H D.: Mesh colors. ACM Trans-
actions on Graphics (TOG) 29, 2 (2010), 15.

156



Rendern von UnterteilungsĘächen

mittels Hardware Tessellierung





Zusammenfassung

Computergenerierte Bilder werden immer wichtiger im alltäglichen Leben.
Dabei benötigen zunehmend realistischer werdende Bildermehr undmehr
wahrnehmbares Detail. Die visuelle Qualität der generierten Bilder hängt
dabei stark von der Beschreibung der verwendeten Szenengeometrie ab.
Speziell in der Filmbranche haben sich dabei UnterteilungsĘächen zu ei-
nem Industriestandard entwickelt. Während UnterteilungsĘächen Graĕk-
designern einen hohen Grad an Flexibilität bieten, ist die Bildgenerierung
von Szenenmit solchenOberĘächen sehr aufwändig.Daherwerden in Film-
produktionen typischerweise teureHochleistungsrechnermit entsprechend
hoher Rechenleistung eingesetzt.

In dieser Arbeit zeigen wir Methoden um hochqualitative Filminhalte in
Echtzeitanwendungen auf handelsüblichen Desktop-Computern einzuset-
zen. Dabei werden moderne Graĕkkarten und die zugehörige Hardware
Tessellierung verwendet, welche die OberĘächengeometrie dynamisch und
basierend auf einzelnen parametrischen Flächenstücken generiert. Der ent-
scheidende Vorteil der Hardware Tessellierung liegt darin, dass die Ober-
Ęächengeometrie auf den jeweiligen Berechnungseinheiten berechnet und
direkt weiterverarbeitet wird. Dadurch können generierte Polygone direkt
und ohne zusätzliche Speicherzugriffe rasterisiert werden. Außerdem las-
sen sich Objekte sehr einfach animieren, da lediglich die Kontrollpunkte
der Flächenstücke bewegt werden müssen. In einem ersten Schritt unseres
Verfahrens werden dazu UnterteilungsĘächen in einzelne Flächenstücke
zerlegt, welche anschließend vom Hardware Tessellierer verarbeitet wer-
den. Diese werden dann entgegen der rekursiven Deĕnition von Unter-
teilungsĘächen direkt ausgewertet. Zusätzlich wird hochfrequentes Ober-
Ęächendetail durch eine analytische Verschiebungsfunktion realisiert. Die
endgültigen OberĘächenpunkte sowie die zugehörigen Normalen können
dann anhand der Verschiebungsfunktion und der darunterliegenden Un-
terteilungsĘäche bestimmtwerden. Umdie Bildgenerierung zu beschleuni-

159



gen, stellen wir außerdemVerfahren zur Auswahl sichtbarer Flächenstücke
vor, was letztlich dazu beiträgt überĘüssige Berechnungen zu vermeiden.
Zudem ermöglicht ein Kollisionserkennungsverfahren die Interaktion von
hardwaretessellierten dynamischen Objekten in Echtzeit.

Letztendlich stellen wir eine umfassende Lösung bereit, um Unterteilungs-
Ęächen in Echtzeitanwendungen einzusetzen. Aktuelle Entwicklungen zei-
gen, dass dadurch die nächste Generation von Computerspielen und Mo-
dellierungssoware hochdetaillierte OberĘächen darstellen und animieren
kann.

160



Lebenslauf

N, V: Nießner, Matthias

G: 14.05.1986

G: Gunzenhausen

S: deutsch

F: ledig

09/96 -- 07/05 Gymnasium

10/05 -- 11/09 Studium der Informatik an der

Universität Erlangen-Nürnberg

09/06 -- 10/10 System & Netzwerkadministrator (Rommelwood e.V.)

09/07 -- 11/09 Studentische Hilfskra (versch. Veranstaltungen)

11/09 Diplom in Informatik

12/09 -- Wissenschalicher Mitarbeiter am

Lehrstuhl für Graphische Datenverarbeitung

08/10 -- 10/10 Praktikum bei Microso Research, Redmond, USA

08/11 -- 10/11 Praktikum bei Microso Research, Redmond, USA

08/12 -- 11/12 Praktikum bei Microso Research, Redmond, USA

03/13 -- 05/13 Praktikum bei Microso Research, Cambridge, UK

07/13 Promotion




	Introduction and Fundamentals
	Motivation
	Contributions
	Subdivision Surfaces
	Graphics Processing Units
	GPU Architectures
	Graphics Pipeline and Hardware Tessellation


	Subdivision Surface Rendering
	Introduction
	Previous Work
	Feature Adaptive GPU Rendering of Subdivision Surfaces
	Introduction and Algorithm Overview
	Table Driven Subdivision on the GPU
	Feature Adaptive Subdivision
	Patch Construction
	Full Patches
	Transition Patches

	Watertight Evaluation
	Same Subdivision Level
	Between Subdivision Levels

	Examples
	Extraordinary Vertices
	Semi-Sharp Creases
	Hierarchical Detail
	Displacement Mapping

	Adaptive Level of Detail
	Results
	Comparison to Global Mesh Refinement
	Comparison to Direct Evaluation and Approximate Patching Algorithms
	Semi-Sharp Creases and Hierarchical Edits
	Memory Requirements

	Conclusion

	Efficient Evaluation of Semi-Sharp Creases
	Introduction and Algorithm Overview
	Evaluation of Semi-Sharp Creases in Regular Patches
	Fractional Sharpness

	Evaluation of Semi-Sharp Creases in Irregular Patches
	GPU Implementation using Hardware Tessellation
	Results
	Conclusion


	High-frequency Detail on Subdivision Surfaces
	Introduction
	Previous Work
	Analytic GPU Displacement Mapping for Subdivision Surfaces
	Introduction and Algorithm Overview
	Solutions and Contributions
	Algorithm Overview

	Tile-Based Texture Format
	Displacement Data Generation
	Overlap at Extraordinary Vertices
	Mip Levels and Global Texture Design
	Non-uniform Tile Sizes

	Surface Rendering
	Surface Evaluation
	Approximate Shading
	Rendering using Hardware Tessellation
	Base Surface Evaluation

	Level of Detail
	Tessellation Factor Estimation
	Mip Level Selection

	Results
	Conclusion


	Performance Enhancement by Patch Culling
	Introduction
	Previous Work
	Back-Patch Culling Techniques
	Occlusion Culling

	Effective Back-Patch Culling for Hardware Tessellation
	Introduction and Algorithm Overview
	Parametric Tangent Plane
	Visibility Classification
	Triangle Culling
	Patch Culling

	Serial Algorithm
	The 4D Cross Product

	Parallel Algorithm
	Results and Discussion
	Conclusion

	Patch-Based Occlusion Culling for Hardware Tessellation
	Introduction and Algorithm Overview
	Culling Pipeline
	Aggressive Culling

	Applying Cull Decision
	Computing Occlusion Data
	Cull Decision
	Displaced Patches

	Implementation Details
	Results
	Cull Computations
	Culling within Individual Objects
	General Culling

	Conclusion


	Collision Detection
	Introduction
	Previous Work
	Collision Detection for Hardware Tessellation
	Introduction and Algorithm Overview
	Collision Candidates
	Voxelization
	Collision Detection
	Basic Collision Test
	Extended Collision Test

	Results
	Conclusion

	Conlusion


