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ABSTRACT
Face2Face is an approach for real-time facial reenactment of a
monocular target video sequence (e.g., Youtube video). The source
sequence is also a monocular video stream, captured live with a
commodity webcam. Our goal is to animate the facial expressions
of the target video by a source actor and re-render the manipu-
lated output video in a photo-realistic fashion. To this end, we first
address the under-constrained problem of facial identity recovery
from monocular video by non-rigid model-based bundling. At run
time, we track facial expressions of both source and target video us-
ing a dense photometric consistency measure. Reenactment is then
achieved by fast and efficient deformation transfer between source
and target. The mouth interior that best matches the re-targeted
expression is retrieved from the target sequence and warped to pro-
duce an accurate fit. Finally, we convincingly re-render the synthe-
sized target face on top of the corresponding video stream such that
it seamlessly blends with the real-world illumination. We demon-
strate our method in a live setup, where Youtube videos are reen-
acted in real time. This live setup has also been shown at SIG-
GRAPH Emerging Technologies 2016 [20], where it won the Best
in Show Award.

1. INTRODUCTION
In recent years, real-time markerless facial performance capture

based on commodity sensors has been demonstrated. Impressive
results have been achieved, both based on RGB as well as RGB-D
data. These techniques have become increasingly popular for the
animation of virtual CG avatars in video games and movies. It is
now feasible to run these face capture and tracking algorithms from
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home, which is the foundation for many VR and AR applications,
such as teleconferencing.

In this paper, we employ a new dense markerless facial perfor-
mance capture method based on monocular RGB data, similar to
state-of-the-art methods. However, instead of transferring facial ex-
pressions to virtual CG characters, our main contribution is monoc-
ular facial reenactment in real-time. In contrast to previous reen-
actment approaches that run offline, our goal is the online transfer
of facial expressions of a source actor captured by an RGB sensor
to a target actor. The target sequence can be any monocular video;
e.g., legacy video footage downloaded from Youtube with a facial
performance. We aim to modify the target video in a photo-realistic
fashion, such that it is virtually impossible to notice the manipula-
tions. Faithful photo-realistic facial reenactment is the foundation
for a variety of applications; for instance, in video conferencing, the
video feed can be adapted to match the face motion of a translator,
or face videos can be convincingly dubbed to a foreign language.

In our method, we first reconstruct the shape identity of the target
actor using a new global non-rigid model-based bundling approach
based on a prerecorded training sequence. As this preprocess is
performed globally on a set of training frames, we can resolve ge-
ometric ambiguities common to monocular reconstruction. At run-
time, we track both the expressions of the source and target actor’s
video by a dense analysis-by-synthesis approach based on a statis-
tical facial prior. We demonstrate that our RGB tracking accuracy
is on par with the state of the art, even with online tracking meth-
ods relying on depth data. In order to transfer expressions from the
source to the target actor in real-time, we propose a novel transfer
functions that efficiently applies deformation transfer [18] directly
in the used low-dimensional expression space. For final image syn-
thesis, we re-render the target’s face with transferred expression
coefficients and composite it with the target video’s background
under consideration of the estimated environment lighting. Finally,
we introduce a new image-based mouth synthesis approach that
generates a realistic mouth interior by retrieving and warping best
matching mouth shapes from the offline sample sequence. It is im-
portant to note that we maintain the appearance of the target mouth
shape; in contrast, existing methods either copy the source mouth
region onto the target [23]or a generic teeth proxy is rendered [8,
19], both of which leads to inconsistent results. Fig. 2 shows an
overview of our method.



Figure 1: Proposed online reenactment setup: A monocular target video sequence (e.g., from Youtube) is reenacted based on the expressions
of a source actor who is recorded live with a commodity webcam.

We demonstrate highly-convincing transfer of facial expressions
from a source to a target video in real time. We show results with
a live setup where a source video stream, which is captured by a
webcam, is used to manipulate a target Youtube video. In addition,
we compare against state-of-the-art reenactment methods, which
we outperform both in terms of resulting video quality and runtime
(we are the first real-time RGB reenactment method). In summary,
our key contributions are:

• dense, global non-rigid model-based bundling,
• accurate tracking, appearance, and lighting estimation in un-

constrained live RGB video,
• person-dependent expression transfer using subspace defor-

mations,
• and a novel mouth synthesis approach.

2. RELATED WORK

Offline RGB Performance Capture.
Recent offline performance capture techniques approach the hard

monocular reconstruction problem by fitting a blendshape or a multi-
linear face model to the input video sequence. Even geometric
fine-scale surface detail is extracted via inverse shading-based sur-
face refinement. Shi et al. [16] achieve impressive results based
on global energy optimization of a set of selected keyframes. Our
model-based bundling formulation to recover actor identities is sim-
ilar to their approach; however, we use robust and dense global
photometric alignment, which we enforce with an efficient data-
parallel optimization strategy on the GPU.

Online RGB-D Performance Capture.
Weise et al. [25] capture facial performances in real-time by fit-

ting a parametric blendshape model to RGB-D data, but they re-
quire a professional, custom capture setup. The first real-time fa-
cial performance capture system based on a commodity depth sen-
sor has been demonstrated by Weise et al. [24]. Follow up work
focused on corrective shapes [2], dynamically adapting the blend-
shape basis [11], non-rigid mesh deformation [6]. These works
achieve impressive results, but rely on depth data which is typically
unavailable in most video footage.

Online RGB Performance Capture.
While many sparse real-time face trackers exist, e.g., [15], real-

time dense monocular tracking is the basis of realistic online facial
reenactment. Cao et al. [5] propose a real-time regression-based ap-
proach to infer 3D positions of facial landmarks which constrain a

user-specific blendshape model. Follow-up work [4] also regresses
fine-scale face wrinkles. These methods achieve impressive results,
but are not directly applicable as a component in facial reenact-
ment, since they do not facilitate dense, pixel-accurate tracking.

Offline Reenactment.
Vlasic et al. [23] perform facial reenactment by tracking a face

template, which is re-rendered under different expression param-
eters on top of the target; the mouth interior is directly copied
from the source video. Image-based offline mouth re-animation
was shown in [3]. Garrido et al. [7] propose an automatic purely
image-based approach to replace the entire face. These approaches
merely enable self-reenactment; i.e., when source and target are
the same person; in contrast, we perform reenactment of a different
target actor. Recent work presents virtual dubbing [8], a problem
similar to ours; however, the method runs at slow offline rates and
relies on a generic teeth proxy for the mouth interior. Li et al. [12]
retrieve frames from a database based on a similarity metric. They
use optical flow as appearance and velocity measure and search for
the k-nearest neighbors based on time stamps and flow distance.
Saragih et al. [15] present a real-time avatar animation system from
a single image. Their approach is based on sparse landmark track-
ing, and the mouth of the source is copied to the target using texture
warping.

Online Reenactment.
Recently, first online facial reenactment approaches based on

RGB-(D) data have been proposed. Kemelmacher-Shlizerman et
al. [10] enable image-based puppetry by querying similar images
from a database. They employ an appearance cost metric and con-
sider rotation angular distance. While they achieve impressive re-
sults, the retrieved stream of faces is not temporally coherent. Thies
et al. [19] show the first online reenactment system; however, they
rely on depth data and use a generic teeth proxy for the mouth re-
gion. In this paper, we address both shortcomings: 1) our method
is the first real-time RGB-only reenactment technique; 2) we syn-
thesize the mouth regions exclusively from the target sequence (no
need for a teeth proxy or direct source-to-target copy).

Follow-up Work.
The core component of the proposed approach is the dense face

reconstruction algorithm. It has already been adapted for several
applications, such as head mounted display removal [22], facial
projection mapping [17], and avatar digitization [9]. FaceVR [22]
demonstrates self-reenactment for head mounted display removal,
which is particularly useful for enabling natural teleconferences in



virtual reality. The FaceForge [17] system enables real-time facial
projection mapping to dynamically alter the appearance of a person
in the real world. The avatar digitization approach of Hu et al. [9]
reconstructs a stylized 3D avatar that includes hair and teeth, from
just a single image. The resulting 3D avatars can for example be
used in computer games.

3. USE CASES
The proposed facial tracking and reenactment has several use-

cases that we want to highlight in this section. In movie produc-
tions the idea of facial reenactment can be used as a video editing
tool to change for example the expression of an actor in a particular
shot. Using the estimated geometry of an actor, it can also be used
to modify the appearance of a face in a post-process, e.g., changing
the illumination. Another field in post-production is the synchro-
nization of an audio channel to the video. If a movie is translated
to another language, the movements of the mouth do not match the
audio of the so called dubber. Nowadays, to match the video, the
audio including the spoken text is adapted, which might result in a
loss of information. Using facial reenactment instead, the expres-
sions of the dubber can be transferred to the actor in the movie and
thus the audio and video is synchronized. Since our reenactment
approach runs in real time, it is also possible to setup a teleconfer-
encing system with a live interpreter that simultaneously translates
the speech of a person to another language.

In contrast to state-of-the-art movie production setups that work
with markers and complex camera setups, our system presented
in this paper only requires commodity hardware without the need
for markers. Our tracking results can also be used to animate vir-
tual characters. These virtual characters can be part of anima-
tion movies, but can also be used in computer games. With the
introduction of virtual reality glasses, also called head mounted
displays (HMDs), the realistic animation of such virtual avatars,
becomes more and more important for an immersive game-play.
FaceVR [22] demonstrates that facial tracking is also possible if the
face is almost completely occluded by such an HMD. The project
also paves the way to new applications like teleconferencing in VR
based on HMD removal.

Besides these consumer applications, you can also think of nu-
merous medical applications. For example one can build a training
system that helps patients to train expressions after a stroke.

4. METHOD OVERVIEW
In the following, we describe our real-time facial reenactment

pipeline (see Fig. 2). Input to our method is a monocular target
video sequence and a live video stream captured by a commodity
webcam. First, we describe how we synthesize facial imagery us-
ing a statistical prior and an image formation model (see Sec. 5).
We find optimal parameters that best explain the input observations
by solving a variational energy minimization problem (see Sec. 6).
We minimize this energy with a tailored, data-parallel GPU-based
Iteratively Reweighted Least Squares (IRLS) solver (see Sec. 7).
We employ IRLS for off-line non-rigid model-based bundling (see
Sec. 8) on a set of selected keyframes to obtain the facial identity
of the source as well as of the target actor. This step jointly recov-
ers the facial identity, expression, skin reflectance, and illumina-
tion from monocular input data. At runtime, both source and target
animations are reconstructed based on a model-to-frame tracking
strategy with a similar energy formulation. For reenactment, we
propose a fast and efficient deformation transfer approach that di-
rectly operates in the subspace spanned by the used statistical prior
(see Sec. 9). The mouth interior that best matches the re-targeted

Figure 2: An overview of our reenactment approach: In a prepro-
cessing step we analyze and reconstruct the face of the target actor.
During live reenactment, we track the expression of the source ac-
tor and transfer them to the reconstructed target face. Finally, we
composite a novel image of the target person using a mouth interior
of the target sequence that best matches the new expression.

expression is retrieved from the input target sequence (see Sec. 10)
and is warped to produce an accurate fit. We demonstrate our com-
plete pipeline in a live reenactment setup that enables the modifica-
tion of arbitrary video footage and perform a comparison to state-
of-the-art tracking as well as reenactment approaches (see Sec. 11).
In Sec. 12 we show the limitations of our proposed method.

Since we are aware of the implications of a video editing tool like
Face2Face, we included a section in this paper that discusses the
potential misuse of the presented technology (see Sec. 13). Finally,
we conclude with an outlook on future work (see Sec. 14).

5. SYNTHESIS OF FACIAL IMAGERY
The synthesis of facial imagery is based on a multi-linear face

model (see the original Face2Face paper for more details). The
first two dimensions represent facial identity – i.e., geometric shape
and skin reflectance – and the third dimension controls the facial
expression. Hence, we parametrize a face as:

Mgeo(α, δ) = aid + Eid ·α+ Eexp · δ , (1)
Malb (β) = aalb + Ealb · β . (2)

This prior assumes a multivariate normal probability distribution
of shape and reflectance around the average shape aid ∈ R3n and
reflectance aalb ∈ R3n. The shape Eid ∈ R3n×80, reflectance
Ealb ∈ R3n×80, and expression Eexp ∈ R3n×76 basis and the
corresponding standard deviations σid ∈ R80, σalb ∈ R80, and
σexp ∈ R76 are given. The model has 53K vertices and 106K
faces. A synthesized image CS is generated through rasterization
of the model under a rigid model transformation Φ(v) and the full
perspective transformation Π(v). Illumination is approximated by
the first three bands of Spherical Harmonics (SH) [13] basis func-
tions, assuming Labertian surfaces and smooth distant illumination,
neglecting self-shadowing.

Synthesis is dependent on the face model parameters α, β, δ,
the illumination parameters γ, the rigid transformation R, t, and
the camera parameters κ defining Π. The vector of unknowns P is
the union of these parameters.



6. ENERGY FORMULATION
Given a monocular input sequence, we reconstruct all unknown

parameters P jointly with a robust variational optimization. The
proposed objective is highly non-linear in the unknowns and has
the following components:

E(P)=wcolEcol(P) + wlanElan(P)︸ ︷︷ ︸
data

+wregEreg(P)︸ ︷︷ ︸
prior

. (3)

The data term measures the similarity between the synthesized im-
agery and the input data in terms of photo-consistency Ecol and
facial feature alignment Elan. The likelihood of a given parameter
vector P is taken into account by the statistical regularizer Ereg .
The weights wcol, wlan, and wreg balance the three different sub-
objectives. In all of our experiments, we set wcol = 1, wlan = 10,
and wreg = 2.5 ·10−5. In the following, we introduce the different
sub-objectives.

Photo-Consistency. In order to quantify how well the input
data is explained by a synthesized image, we measure the photo-
metric alignment error on pixel level:

Ecol(P) =
1

|V|
∑
p∈V

‖CS(p)− CI(p)‖2 , (4)

where CS is the synthesized image, CI is the input RGB image,
and p∈V denote all visible pixel positions in CS . We use the `2,1-
norm instead of a least-squares formulation to be robust against
outliers. In our scenario, distance in color space is based on `2,
while in the summation over all pixels an `1-norm is used to enforce
sparsity.

Feature Alignment. In addition, we enforce feature similarity
between a set of salient facial feature point pairs detected in the
RGB stream:

Elan(P) =
1

|F|
∑
fj∈F

wconf,j ‖f j −Π(Φ(vj)‖22 . (5)

To this end, we employ a state-of-the-art facial landmark tracking
algorithm by [14]. Each feature point f j ∈ F ⊂ R2 comes with
a detection confidence wconf,j and corresponds to a unique vertex
vj = Mgeo(α, δ) ∈ R3 of our face prior. This helps avoiding
local minima in the highly-complex energy landscape of Ecol(P).

Statistical Regularization. We enforce plausibility of the syn-
thesized faces based on the assumption of a normal distributed pop-
ulation. To this end, we enforce the parameters to stay statistically
close to the mean:

Ereg(P) =

80∑
i=1

[(
αi

σid,i

)2

+

(
βi

σalb,i

)2]
+

76∑
i=1

(
δi

σexp,i

)2

. (6)

This commonly-used regularization strategy prevents degenerations
of the facial geometry and reflectance, and guides the optimization
strategy out of local minima [1].

7. DATA-PARALLEL OPTIMIZATION
The proposed robust tracking objective is a general unconstrained

non-linear optimization problem. We use Iteratively Reweighted
Least Squares (IRLS) to minimize this objective in real-time using
a novel data-parallel GPU-based solver. The key idea of IRLS is
to transform the problem, in each iteration, to a non-linear least-

squares problem by splitting the norm in two components:

||r(P)||2 = (||r(Pold)||2)−1︸ ︷︷ ︸
constant

· ||r(P)||22 .

Here, r(·) is a general residual and Pold is the solution computed
in the last iteration. Thus, the first part is kept constant during one
iteration and updated afterwards. Close in spirit to [19], each single
iteration step is implemented using the Gauss-Newton approach.
We take a single GN step in every IRLS iteration and solve the cor-
responding system of normal equations JTJδ∗ = −JTF based on
PCG to obtain an optimal linear parameter update δ∗. The Jaco-
bian J and the systems’ right hand side −JTF are precomputed
and stored in device memory for later processing as proposed by
Thies et al. [19]. For more details we refer to the original paper
[21]. Note that our complete framework is implemented using Di-
rectX for rendering and DirectCompute for optimization. The joint
graphics and compute capability of DirectX11 enables us to exe-
cute the analysis-by-synthesis loop without any resource mapping
overhead between these two stages. In the case of an analysis-by-
synthesis approach, this is essential for runtime performance, since
many rendering-to-compute switches are required. To compute the
Jacobian J we developed a differential renderer that is based on
the standard rasterizer of the graphics pipeline. To this end, during
the synthesis stage, we additionally store the vertex and triangle
attributes that are required for computing the partial derivatives to
dedicated rendertargets. Using this information a compute shader
calculates the final derivatives that are needed for the optimization.

8. NON-RIGID MODEL-BASED BUNDLING
To estimate the identity of the actors in the heavily undercon-

strained scenario of monocular reconstruction, we introduce a non-
rigid model-based bundling approach. Based on the proposed ob-
jective, we jointly estimate all parameters over k key-frames of
the input video sequence. The estimated unknowns are the global
identity {α, β} and intrinsics κ as well as the unknown per-frame
pose {δk, Rk, tk}k and illumination parameters {γk}k. We use a
similar data-parallel optimization strategy as proposed for model-
to-frame tracking, but jointly solve the normal equations for the
entire keyframe set. For our non-rigid model-based bundling prob-
lem, the non-zero structure of the corresponding Jacobian is block
dense. Our PCG solver exploits the non-zero structure for increased
performance (see original paper). Since all keyframes observe the
same face identity under potentially varying illumination, expres-
sion, and viewing angle, we can robustly separate identity from all
other problem dimensions. Note that we also solve for the intrin-
sic camera parameters of Π, thus being able to process uncalibrated
video footage. The employed Gauss-Newton framework is embed-
ded in a hierarchical solution strategy (see Fig. 3). The underlying
hierarchy enables faster convergence and avoids getting stuck in lo-
cal minima of the optimized energy function. We start optimizing
on a coarse level and lift the solution to the next finer level using
the parametric face model. In our experiments we used three lev-
els with 25, 5, and 1 Gauss-Newton iterations for the coarsest, the
medium, and the finest level, respectively. In each Gauss-Newton
iteration, we employ 4 PCG steps to efficiently solve the underly-
ing normal equations. Our implementation is not restricted to the
number k of used keyframes, but the processing time increases lin-
early with k. In our experiments we used k = 6 keyframes for the
estimation of the identity parameters, which results in a processing
time of only a few seconds (∼ 20s).



Figure 3: Non-rigid model-based bundling hierarchy: The top row
shows the hierarchy of the input video and the second row the over-
laid face model.

9. EXPRESSION TRANSFER
To transfer the expression changes from the source to the target

actor while preserving person-specificness in each actor’s expres-
sions, we propose a sub-space deformation transfer technique. We
are inspired by the deformation transfer energy of Sumner et al.
[18], but operate directly in the space spanned by the expression
blendshapes. This not only allows for the precomputation of the
pseudo-inverse of the system matrix, but also drastically reduces
the dimensionality of the optimization problem allowing for fast
real-time transfer rates. Assuming source identity αS and target
identity αT fixed, transfer takes as input the neutral δSN , deformed
source δS , and the neutral target δTN expression. Output is the
transferred facial expression δT directly in the reduced sub-space
of the parametric prior.

As proposed by [18], we first compute the source deformation
gradients Ai ∈ R3×3 that transform the source triangles from
neutral to deformed. The deformed target v̂i = M i(α

T , δT ) is
then found based on the undeformed state vi = M i(α

T , δTN ) by
solving a linear least-squares problem. Let (i0, i1, i2) be the ver-
tex indices of the i-th triangle, V = [vi1 − vi0 ,vi2 − vi0 ] and
V̂ = [v̂i1 − v̂i0 , v̂i2 − v̂i0 ], then the optimal unknown target de-
formation δT is the minimizer of:

E(δT ) =

|F |∑
i=1

∣∣∣∣∣∣AiV − V̂
∣∣∣∣∣∣2

F
. (7)

This problem can be rewritten in the canonical least-squares form
by substitution:

E(δT ) =
∣∣∣∣∣∣AδT − b∣∣∣∣∣∣2

2
. (8)

The matrix A ∈ R6|F |×76 is constant and contains the edge in-
formation of the template mesh projected to the expression sub-
space. Edge information of the target in neutral expression is in-
cluded in the right-hand side b ∈ R6|F |. b varies with δS and is
computed on the GPU for each new input frame. The minimizer of
the quadratic energy can be computed by solving the correspond-
ing normal equations. Since the system matrix is constant, we can
precompute its Pseudo Inverse using a Singular Value Decompo-
sition (SVD). Later, the small 76 × 76 linear system is solved in
real-time. No additional smoothness term as in [2, 18] is needed,

Figure 4: Mouth Database: We use the appearance of the mouth of
a person that has been captured in the target video sequence.

since the blendshape model implicitly restricts the result to plausi-
ble shapes and guarantees smoothness.

10. MOUTH RETRIEVAL
For a given transferred facial expression, we need to synthesize a

realistic target mouth region. To this end, we retrieve and warp the
best matching mouth image from the target actor sequence. We as-
sume that sufficient mouth variation is available in the target video,
i.e., we assume that the entire target video is known or at least a
short part of it. It is also important to note that we maintain the
appearance of the target mouth. This leads to much more realistic
results than either copying the source mouth region [23] or using
a generic 3D teeth proxy [8, 19]. For detailed information on the
mouth retrieval process, we refer to the original paper.

11. RESULTS

Live Reenactment Setup.
Our live reenactment setup consists of standard consumer-level

hardware. We capture a live video with a commodity webcam
(source), and download monocular video clips from Youtube (tar-
get). In our experiments, we use a Logitech HD Pro C920 camera
running at 30Hz in a resolution of 640 × 480; although our ap-
proach is applicable to any consumer RGB camera. Overall, we
show highly-realistic reenactment examples of our algorithm on a
variety of target Youtube videos at a resolution of 1280×720. The
videos show different subjects in different scenes filmed from vary-
ing camera angles; each video is reenacted by several volunteers as
source actors. Reenactment results are generated at a resolution of
1280 × 720. We show real-time reenactment results in Fig. 5 and
in the accompanying video.

Runtime.
For all experiments, we use three hierarchy levels for tracking

(source and target). In pose optimization, we only consider the sec-
ond and third level, where we run one and seven Gauss-Newton
steps, respectively. Within a Gauss-Newton step, we always run
four PCG steps. In addition to tracking, our reenactment pipeline
has additional stages whose timings are listed in Table 1. Our
method runs in real-time on a commodity desktop computer with
an NVIDIA Titan X and an Intel Core i7-4770.

Tracking Comparison to Previous Work.
Face tracking alone is not the main focus of our work, but the

following comparisons show that our tracking is on par with or
exceeds the state of the art. Here we show some of the comparisons
that we conducted in the original paper.



Figure 5: Results of our reenactment system. Corresponding run times are listed in Table 1. The length of the source and resulting output
sequences is 965, 1436, and 1791 frames, respectively; the length of the input target sequences is 431, 286, and 392 frames, respectively.



CPU GPU FPS
SparseFT MouthRT DenseFT DefTF Synth (Hz)
5.97ms 1.90ms 22.06ms 3.98ms 10.19ms 27.6
4.85ms 1.50ms 21.27ms 4.01ms 10.31ms 28.1
5.57ms 1.78ms 20.97ms 3.95ms 10.32ms 28.4

Table 1: Avg. run times for the three sequences of Fig. 5, from top
to bottom. Standard deviations w.r.t. the final frame rate are 0.51,
0.56, and 0.59 fps, respectively. Note that CPU and GPU stages
run in parallel.

Figure 6: Comparison of our RGB tracking to Cao et al. [5], and to
RGB-D tracking by Thies et al. [19].

Figure 7: Dubbing: Comparison to Garrido et al. [8].

Figure 8: Comparison of the proposed RGB reenactment to the
RGB-D reenactment of Thies et al. [19].

Cao et al. 2014 [5]: They capture face performance from monoc-
ular RGB in real-time. In most cases, our and their method produce
similar high-quality results (see Fig. 6); our identity and expression
estimates are slightly more accurate though.

Thies et al. 2015 [19]: Their approach captures face perfor-
mance in real-time from RGB-D, Fig. 6. While we do not require
depth data, results of both approaches are similarly accurate.

Reenactment Evaluation.
In Fig. 7, we compare our approach against state-of-the art reen-

actment by Garrido et al. [8]. Both methods provide highly-realistic
reenactment results; however, their method is fundamentally of-
fline, as they require all frames of a sequence to be present at any
time. In addition, they rely on a generic geometric teeth proxy
which in some frames makes reenactment less convincing. In Fig. 8,
we compare against the work by Thies et al. [19]. Runtime and
visual quality are similar for both approaches; however, their ge-
ometric teeth proxy leads to an undesired appearance of the reen-
acted mouth. Thies et al. use an RGB-D camera, which limits the
application range; they cannot reenact Youtube videos.

12. LIMITATIONS
The assumption of Lambertian surfaces and smooth illumination

is limiting, and may lead to artifacts in the presence of hard shad-
ows or specular highlights; a limitation shared by most state-of-the-
art methods. Scenes with face occlusions by long hair and a beard
are challenging. Furthermore, we only reconstruct and track a low-
dimensional blendshape model (76 coefficients), which omits fine-
scale static and transient surface details. Our retrieval-based mouth
synthesis assumes sufficient visible expression variation in the tar-
get sequence. On a too short sequence, or when the target remains
static, we cannot learn the person-specific mouth behavior. In this
case, temporal aliasing can be observed, as the target space of the
retrieved mouth samples is too sparse. Another limitation is caused
by our commodity hardware setup (webcam, USB, and PCI), which
introduces a small delay of ≈ 3 frames.

13. DISCUSSION
Our face reconstruction and photo-realistic re-rendering approach

enables the manipulation of videos at real-time frame rates. In ad-
dition, the combination of the proposed approach with a voice im-
personator or a voice synthesis system, would enable the generation
of made-up video content that could potentially be used to defame
people or to spread so-called ‘fake-news’. We want to emphasize
that computer-generated content has been a big part of feature-film
movies for over 30 years. Virtually every high-end movie pro-
duction contains a significant percentage of synthetically-generated
content (from Lord of the Rings to Benjamin Button). These re-
sults are already hard to distinguish from reality and it often goes
unnoticed that the content is not real. Thus, the synthetic modifi-
cation of video clips was already possible for a long time, but it
was a time consuming process and required domain experts. Our
approach is a game changer, since it enables editing of videos in
real-time on a commodity PC, which makes this technology acces-
sible to non-experts. We hope that the numerous demonstrations
of our reenactment systems will teach people to think more criti-
cal about the video content they consume every day, especially if
there is no proof of origin. The presented system also demonstrates
the need for sophisticated fraud detection and watermarking algo-
rithms. We believe that the field of digital forensics will receive a
lot of attention in the future.



14. CONCLUSION
The presented approach is the first real-time facial reenactment

system that requires just monocular RGB input. Our live setup en-
ables the animation of legacy video footage – e.g., from Youtube
– in real time. Overall, we believe our system will pave the way
for many new and exciting applications in the fields of VR/AR,
teleconferencing, or on-the-fly dubbing of videos with translated
audio. One direction for future work is to provide full control over
the target head. A properly rigged mouth and tongue model recon-
structed from monocular input data will provide control over the
mouth cavity, a wrinkle formation model will provide more realis-
tic results by adding fine-scale surface detail and eye-tracking will
enable control over the target’s eye movement.
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