
Eurographics Symposium on Geometry Processing 2018
T. Ju and A. Vaxman
(Guest Editors)

Volume 37 (2018), Number 5

QuadriFlow: A Scalable and Robust Method for Quadrangulation

Jingwei Huang†1 Yichao Zhou†2 Matthias Niessner3 Jonathan Richard Shewchuk2 Leonidas J. Guibas1

1Stanford University 2University of California, Berkeley 3Technical University of Munich

(a) Input triangulation (b) Integer-Grid Maps (c) Instant Meshes (d) QuadriFlow (e) QuadriFlow (f) QuadriFlow zoom

Figure 1: Quadrilateral meshes generated by Integer-Grid Maps (IGM) [BCE∗13], Instant Meshes [JTPSH15], and our algorithm Quadri-
Flow. IGM (b) sometimes produces badly distorted quadrilaterals. Instant Meshes (c) produces more vertices of valence 3 or 5. Quadri-
Flow (d, e, f) produces fewer vertices of irregular valence than Instant Meshes by removing all the singularities from the position field, while
producing less distortion than IGM.

Abstract

QuadriFlow is a scalable algorithm for generating quadrilateral surface meshes based on the Instant Field-Aligned Meshes
of Jakob et al. (ACM Trans. Graph. 34(6):189, 2015). We modify the original algorithm such that it efficiently produces
meshes with many fewer singularities. Singularities in quadrilateral meshes cause problems for many applications, includ-
ing parametrization and rendering with Catmull–Clark subdivision surfaces. Singularities can rarely be entirely eliminated,
but it is possible to keep their number small. Local optimization algorithms usually produce meshes with many singularities,
whereas the best algorithms tend to require non-local optimization, and therefore are slow. We propose an efficient method
to minimize singularities by combining the Instant Meshes objective with a system of linear and quadratic constraints. These
constraints are enforced by solving a global minimum-cost network flow problem and local boolean satisfiability problems. We
have verified the robustness and efficiency of our method on a subset of ShapeNet comprising 17,791 3D objects in the wild. Our
evaluation shows that the quality of the quadrangulations generated by our method is as good as, if not better than, those from
other methods, achieving about four times fewer singularities than Instant Meshes. Other algorithms that produce similarly few
singularities are much slower; we take less than ten seconds to process each model. Our source code is publicly available.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Quadrangulation

1. Introduction

Many applications in computer graphics and shape modeling use
models of surfaces that are composed of triangles or polygons.
Although triangular meshes are the most commonly-used surface

† indicates equal contribution

models, quadrilateral meshes are also important because they are
particularly useful for Catmull–Clark subdivision surfaces, textur-
ing, mesh editing, visualization, and physics-based simulation.

State-of-the-art algorithms for quadrilateral surface meshing
typically compute, as a first step, an orientation field that as-
signs local coordinate axes to some points on the input sur-
face [Knu95, RLL∗06, KNP07, BZK09]. The Instant Field-Aligned

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

Meshes algorithm of Jakob et al. [JTPSH15] subsequently com-
putes a position field that assigns local coordinates to those points.
The orientation field determines the directions of the edges of a
quadrilateral mesh, and the position field determines where the
mesh vertices are placed. Ideally, both fields should vary smoothly
over the surface, while obeying constraints that help to align the
mesh with the sharp edges and the curvature of the object.

Both types of field can have irregularities called singularities. If
the fields are defined continuously over the surface, a singularity is
a region where one of the fields is not locally smooth. The pitfall
of these singularities is that the quad mesh subsequently produced
is likely to have an irregular vertex—a vertex whose valence is not
4—near the singularity. Unfortunately, irregular vertices can cause
problems for applications; for instance, they cause unsightly visual
artifacts in Catmull–Clark subdivision, or additional work for an
artist to edit a model.

Algorithms that rely purely on local mesh computations are fast,
but they produce meshes with many singularities. It is possible to
modify the fields to move singularities and sometimes even to elim-
inate them; but eliminating a singularity usually involves merg-
ing pairs of singularities located all around the geometry, which
is “nonlocal.” A global view of quad meshing taken by Bommes et
al. [BZK09], who cast the problem of seamless global parametriza-
tion as a mixed-integer constrained optimization problem (MIP).
The method produces quadrilateral surface meshes of very high
quality, but it is slow and it does not scale well to large meshes.
By contrast, the much more efficient Instant Meshes algorithm of
Jakob et al. [JTPSH15] uses local smoothing operators to compute
an orientation field and a position field quickly. Their method is
scalable and produces high quality quad-dominant meshes without
much distortion. However, it may produce singularities in the posi-
tion field in addition to singularities in orientation field.

We present QuadriFlow, a scalable, robust algorithm for auto-
matic quad meshing that builds upon Instant Meshes but uses a
global method to remove all the singularities from the position
field. We do not change the orientation field, which typically has
many fewer singularities. Our method solves a minimum cost net-
work flow problem as a subproblem, for which efficient algorithms
are available. The speed and reliability of our algorithm can en-
able designers to work on a modeling task interactively and extract
a quad mesh in less than a second for tens of thousands of faces,
and enable physical simulations to perform per-timestep remesh-
ing updates. Our current implementation is a remeshing algorithm,
meaning that its input is a triangular mesh of the input surface (like
many other quad meshing algorithms), though it could be modified
to take a point cloud input as Instant Meshing does.

We view singularity-free position field computation as a globally
constrained optimization problem. Unlike Bommes et al., we do not
solve the problem by mixed-integer programming. Instead, we split
it into three stages.

• Compute the orientation and position fields just as Jakob et al.
do, without enforcing additional constraints.
• Enforce our constraints by modifying only the integer variables

of the position field, changing the integers as little as possible.
• Re-optimize the continuous variables of the position field with

the integer variables held fixed.

The third stage is not difficult, requiring the solution of a linear
system. Our main contribution is a fast and effective method for
the second, largely combinatorial stage. Because of the regular-
ity constraints, the second stage is a mixed-integer programming
problem, for which it is NP-hard to find an optimal solution, but
we can obtain good approximate solutions in practice. We reduce
the problem to an integer linear program (ILP). We approximate
the ILP as an easier minimum cost network flow (MCF) problem,
which can be solved in polynomial time [Kle67]. We further im-
prove the efficiency by a multi-resolution algorithm. To enforce
consistent triangle orientations (no inverted triangles), we impose a
set of quadratic inequality constraints. We are able to satisfy most
of these constraints through simple greedy edge contractions; we
find we can satisfy most of the remaining difficult ones by locally
solving a small boolean satisfiability problem (SAT).

By replacing the MIP solver with an MCF solver that globally re-
duces the number of singularities, plus edge contractions and a SAT
solver that locally impose triangle orientation constraints, we ob-
tain a scalable quad remesher that produces many fewer singulari-
ties than Instant Meshes, often by a factor of four, while being much
faster than the method of Bommes et al. QuadriFlow remeshes a
one-million triangle mesh in 5 seconds, which is comparable to
the interactive method of Ebke et al. [ESCK16]. Our meshes have
less distortion compared to other global methods, and rarely suf-
fer from nonmanifold structure or holes, thanks to the consistent
orientation constraints. In a test on 17,000+ surfaces created from
ShapeNet [CFG∗15], QuadriFlow robustly removed all the singu-
larities from every discrete position field.

2. Related Work

Robust Quadrangulations. Robust quadrangulations based on lo-
cal optimization have a rich literature. Bommes et al. [BLP∗13]
survey many existing methods for quad-mesh generation and pro-
cessing. Many methods transform a pre-existing triangle mesh into
an all-quadrilateral mesh: Q-Morph [OSCS99] does so with an ad-
vancing front algorithm. Blossom-Quad [RLS∗12] uses a perfect
matching algorithm to pair triangles into quads with a global op-
timal solution. Velho and Zorin [VZ01] greedily identify the most
eligible neighboring triangles to pair. SQuad [GLLR11] improves
the representation of the connectivity of meshes, which can be ap-
plied to quadrangulation. Since these methods are not guided by
an orientation field, they have difficulty achieving global regular-
ity or smoothness, and their meshes are often very irregular or
have many singularities. Spectral and Morse complex-based algo-
rithms [DBG∗06, ZHLB10, LHJ∗14] require no integer optimiza-
tion but singularity control is hard for them.

Orientation Fields. An orientation field is a powerful tool to guide
the edge directions in a quad mesh. Specifically, we use 4-way ro-
tationally symmetric orientation fields [RVLL08, LJX∗10], which
are explained in Section 3.1. The target directions are derived
from the principal curvatures [CSM03,CP05], but modified to vary
smoothly. Smooth orientation fields are generated by optimizing
a nonlinear energy function based on periodic functions [HZ00,
RVAL09] or a mixed-integer representation [RVLL08, BZK09].
However, these approaches may get stuck in poor local minima

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

that have many singularities. Knöppel et al. [KCPS13] propose
a global optimization method to obtain better minima. Many ap-
proaches [RVLL08,RVAL09,CDS10,DVPSH14,JFH∗15] integrate
user interactions to help remove singularities.

Field-Aligned Quadrangulations. A direct approach to gener-
ating a quad mesh is to trace the curves in an orientation
field [ACSD∗03], but it is difficult to control the sizes of the quads
obtained that way. Lai et al. [LKH08] directly optimize a triangle
mesh to align its edges to an orientation field, then extract a quad
mesh by pairing triangles. These methods are local, so they gener-
ate many unnecessary singularities.

Another line of work that deals with global parameterization of
maps is based on global optimization that explicitly bounds the map
distortion and produces injective maps. The parameterization can
be extracted as quad meshes using libQEx [EBCK13]. Levi and
Zorin [LZ14] achieve minimum worst-case distortion and prioritize
higher distortion reduction. Chien et al. [CLW16] solve a locally in-
jective map efficiently with sequential convex programming. Myles
et al. [MPZ14] use cross-field line tracing to initialize the quad
patch partition, then compute a bijective global parametrization.

Global methods aim at jointly optimizing the parametriza-
tion with integer constraints that are usually not polynomial-time
tractable. The objective is typically represented as an MIP prob-
lem [BZK09]. The numerical solvers are designed to enforce low
distortion and reduce the number of singularities [BCE∗13, MZ13,
LZ14, MPZ14]. Another global integrable approach [DVPSH15]
minimizes a nonlinear energy, but the optimization process is still
challenging. The output of the global methods is called the Integer-
Grid Map (IGM) [BCE∗13], where the final quad mesh can be ex-
tracted by libQEx [EBCK13]. These methods have full control
of edge alignment and singularity placement, and usually gener-
ate very high quality quad meshes. However, their implementations
are complex, and usually not scalable. Quantized Global Optimiza-
tion [CBK15] uses motorcycle graphs to quickly construct a valid
quantization based on a seamless parametrization.

3. Methods

In this section, we discuss the computation of orientation and po-
sition fields and our innovations for removing singularities from
the latter. We first review the Instant Meshes algorithm of Jakob et
al. [JTPSH15], which we use to initialize the orientation and po-
sition fields, in Section 3.1. We impose constraints on the position
field’s integer offsets to reduce the number of singularities in Sec-
tion 3.2. We propose algorithms to enforce those constraints in Sec-
tions 3.3 and 3.4. We re-optimize the position field in Section 3.5
and extract a quad mesh in Section 3.6. Table 1 summarizes our
notation. Figure 2 distinguishes our contributions from the parts
we borrow from Instant Meshes.

3.1. Instant Field-Aligned Meshes

Here, we recapitulate the main ideas of Instant Meshes [JTPSH15].
Let M = (V,F ,E) be an input surface triangulation where V =
{1,2, . . . , |V|} is a set of vertex indices, E ⊆ V ×V is a set of di-
rected edges, and F is a set of triangular faces.

Table 1: Notation.

M triangle mesh V vertices inM
E directed edges inM E redirected edges inM
F triangles inM nu normal vector at u
ou orientation field at u pu position field at u
ρ desired edge length Ou local frame basis at u
R2(k) 2D rotation through 90 · k◦
R3(n,k) 3D rotation around axis n through 90 · k◦
kuv,kvu integer rotations to align ou,ov

tuv, tvu integer offsets to pull pu,pv together
duv,dvu integer offsets at redirected edge (u,v) ∈ E

Rw
uv rotation matrix to rotate duv to the frame of Ow

G network used in the minimum cost flow problem
V vertices in G E edges in G
c capacity of an edge w cost of an edge
s source of G t sink of G

Optimize Orientation Field: Equation (1) in Section 3.1

Optimize Position Field: Equation (2) in Section 3.1

Enforce Regularity Constraint by MCF: Section 3.3

Enforce Consistent Orientation Constraint: Section 3.4

Greedy Method SAT Reduction

Re-optimize Position Field: Equation (9) in Section 3.5

Quad Mesh Extraction from Position Field: Section 3.6

Figure 2: The pipeline of QuadriFlow. The white nodes are from
Instant Meshes [JTPSH15]; the shaded nodes are our contribution.

Orientation Field. The first step is to compute a four-way rota-
tionally symmetric (4-RoSy) orientation field [RVLL08]. 4-RoSy
fields are also known as cross fields; the orientation field maps each
vertex ofM to a cross that is locally tangent to the surface. Each
cross is invariant to rotations by 90◦ in its tangent plane. The orien-
tation field guides the alignment of the edges in the quad mesh. For
each vertex v ∈ V , Jakob et al. represent the cross at v with a rep-
resentative direction vector ov ∈ R3 that lies in vertex v’s tangent
plane; that is, ov is orthogonal to v’s normal vector nv. To obtain
representational invariance, let R3(n,k) ∈ R3×3 be a 3D rotation
matrix that rotates a vector through 90 ·k◦ counterclockwise around
an axis n (which is the local normal vector). To smooth the orien-
tation field o, Jakob et al. define the extrinsic smoothness energy of
o to be

Eo(o,k) = ∑
(u,v)∈E

]
(

R3(nu,kuv)ou,R3(nv,kvu)ov

)2
,

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

!"
!#

$"

$#

%"

&

%#

'"#
'#"

(#"

("#

)

(a)

(b)

(c)

*#

*"

Align $" and

$# by rotation

+"#

Figure 3: Geometry (a), orientation field (b), and position field (c),
per Jakob et al. [JTPSH15]. The adjacent vertices u and v with po-
sitions pu and pv lie on orthogonal tangent planes with normal vec-
tors nu and nv. ou and ov can be aligned by rotating them through
90 · k◦uv and 90 · k◦vu. Jakob et al. try to make a point on one lattice
nearly coincide with a point on the other lattice; these two points
are at an integer offset of tuv lattice points from pu and tvu lattice
points from pv in local frames. The integer offset duv is the sum of
these integer translations in u’s frame.

where](·, ·) denotes the angle between two vectors, kuv,kvu ∈
{0,1,2,3}, and nu and nv are the normal vectors of vertices u and
v. The integers kuv and kvu are chosen to make the angle as small
as possible. Figure 3(a) illustrates how ou and ov are realigned by
kuv and kvu to point in similar directions (in this example, the same
direction). Jakob et al. show how to use a mixed-integer Gauss–
Seidel algorithm to find

o∗, k∗ = argmin
o,k

Eo(o,k), (1)

thereby obtaining a smooth orientation field like the one illustrated
in Figure 3(b). With this extrinsic energy, the orientation field o∗

also aligns well with shape features of the input geometry.

Position Field. Given an orientation field o∗, Jakob et al. compute
a consistent position field that determines the placement of the ver-
tices of the quadrilateral mesh. Let ρ be a user-specified distance
specifying the desired length of the edges in the output mesh. For
each vertex v ∈ V , the position field maps v to a square lattice that
lies in v’s tangent space, has all its edge lengths equal to ρ, and
is aligned with the cross field as indicated by o∗v . The lattice is
invariant under “horizontal” or “vertical” translations of distance
ρ—that is, in the directions o∗v or nv×o∗v . (Jakob et al. call this po-
sitional symmetry or PoSy.) Hence the only degrees of freedom for
the lattice can be specified as “fractional” horizontal and vertical
translations in the range [0,ρ). For a vertex v ∈ V , let pv ∈ R3 be a
representative lattice point near vertex v in v’s tangent plane. Let

Ov = [o∗v , nv×o∗v]

be a basis for v’s tangent plane whose basis vectors are aligned with
the orientation field. The tangent lattice for v is

T (pv,nv,o∗v) = {T (pv,nv,o∗v , t) : t ∈ Z2} where

T (pv,nv,o∗v , t) = pv +ρOvt.

It is desirable for vertices joined by an edge in E to have tangent
lattices that coincide or nearly coincide—or, more realistically, to
each have one nearby vertex in its lattice such that the two vertices
nearly coincide. Figure 3(a) illustrates the two tangential lattices
of vertices u and v represented by pu and pv, whose lattice points
happen to coincide on the intersection of the two planes. To smooth
the position field p, Jakob et al. define the extrinsic smoothness
energy of p to be

Ep(p, t) = ∑
(u,v)∈E

∥∥∥T (pu,nu,o∗u , tuv)−T (pv,nv,o∗v , tvu)
∥∥∥2

2
,

where tuv, tvu ∈Z2 are selected to remove the translation ambiguity
and make the distance as small as possible. As with the orientation
field, Jakob et al. use a mixed-integer Gauss–Seidel algorithm to
find the minimizer

p∗, t∗ = argmin
p,t

Ep(p, t). (2)

This smoothing procedure produces a position field p∗ smooth
enough to obtain a quad mesh, most of whose edges have length
close to (but not exactly) ρ, as shown in Figure 3(c).

3.2. Integer Offsets and Constraints

Integer Offsets. Jakob et al. note that a singularity appears in the
position field when the sum of integer offsets over a triangle in
the triangle mesh M is nonzero. To mathematically express this
observation, we first define the integer offset along an edge ofM.
We find it useful to redirect the mesh edges E in a canonical way,
with each edge directed from the vertex with lesser index to the
vertex with greater index.

Definition 3.1. Let

E := {(u,v) : u < v and ((u,v) ∈ E or (v,u) ∈ E)}

be the set of redirected edges. For each redirected edge e = (u,v)∈
E, define the 2D integer offset

d∗e = t∗uv−R2(k
∗
uv− k∗vu)t

∗
vu,

the integer offset from u to v in u’s frame, where R2(k) is a 2D
rotation matrix through 90 ·k◦. For notational convenience, we use
de, duv, and dvu interchangeably in the following paragraphs.

After we optimize (2), p∗u and p∗v should be close to each other
after applying the integer offsets t∗uv and t∗vu in the frames of Ou
and Ov, respectively. The formula for the offset is based on the
observation that tvu in frame Ov can be measured in frame Ou as
R2(kuv− kvu)tvu. See the purple vector in Figure 3(a) for an inter-
pretation of duv.

To detect singularities in the position field, we sum up the integer
offsets of the three edges of a triangle under a single frame. For any
(u,v) ∈ E and any w adjacent to both u and v (including w = u),
the integer offset for an edge (u,v) in the frame of vertex w can be
achieved by applying a 2D rotationRw

uv to duv. Specifically, if u <
v, we can directly change the frame from u to w by a rotation along
edge (w,u):Rw

uv = R2(kwu− kuw). For u > v, we first compute the
translation from u to v in v’s frame as −duv, and apply the rotation
along edge (w,v):Rw

uv =−R2(kwv− kvw) = R2(kwv− kvw +2).

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

Regularity Constraints. If the sum of the integer offsets over a
triangle element is nonzero, this triangle encloses a singularity in
the position field [JTPSH15]. Hence we can remove the singulari-
ties from the position field if we can enforce

Ru
uvduv +Ru

vwdvw +Ru
wudwu = 0 ∀∆uvw ∈ F . (3)

Consistent Orientation Constraints. If the position field has tri-
angles with negative orientation, they lead to inverted faces in the
quad mesh. To ensure that there are no inverted faces in the output,
each triangle should have nonnegative orientation, i.e.,

det
[
Ru

uvduv, Ru
uwduw

]
≥ 0. (4)

This constraint is similar to the consistent orientation constraint
proposed by Bommes et al. [BCE∗13]. Jakob et al. do not enforce
this constraint, so their meshes can have inverted faces.

Formulation. Combining Equations (2), (3), and (4), we formu-
late the position field problem as follows.

minimize
p,t

Ep(p, t)

subject to Ru
uvduv +Ru

vwdvw +Ru
wudwu = 0 ∀∆uvw ∈ F ,

det
[
Ru

uvduv, Ru
uwduw

]
≥ 0 ∀∆uvw ∈ F .

This is a mixed-integer programming problem. Solving it directly
is NP-hard and thus not generally scalable. Our method finds an
approximate solution by first computing p∗ and t∗ without con-
straints, using Gauss–Seidel iterations [JTPSH15], then computing
d∗ from t∗ according to the definition, then adjusting d to enforce
Equations (3) and (4). To enforce Equation (3), we try to solve an
integer programming problem, namely to

minimize
d

‖d−d∗‖1 (5)

subject to Ru
uvduv +Ru

vwdvw +Ru
wudwu = 0 ∀∆uvw ∈ F .

We temporarily ignore the quadratic consistent orientation con-
straints (4). We describe an algorithm to solve this relaxed problem
in Section 3.3. In Section 3.4, we describe heuristics to locally re-
pair the inverted triangles and satisfy Equation (4) without breaking
the regularity constraints (3). Finally, we re-optimize the position
field in Section 3.5.

3.3. Removing Singularities from the Position Field

Equation (5) is an integer programming problem (ILP), but we are
able to approximate it as a minimum cost network flow (MCF) prob-
lem, which is our key contribution. Efficient algorithms such as the
network simplex method [Orl97] can be applied to find its optimal
solution in polynomial time.

Minimum Cost Flow. We first show that we can reduce the fol-
lowing class of ILP problems to MCF problems. Given A ∈Rn×m,
b ∈ Rn, ςi ∈ Z, and ω ∈ Rm

+, an ILP problem can be written as

minimize
x∈Zm

ω
ᵀx

subject to Ax = b
0≤ xi ≤ ςi ∀i ∈ {1,2, . . . ,m}.

(6)

minimize
x

x1 +2x2 +3x3 + x4 +4x5

subject to x2− x3 =−5

x5− x2− x1 =−2

x3 + x4− x5 = 4

x1− x4 = 3

0≤ x1 ≤ 3

0≤ x2 ≤ 2

0≤ x3 ≤ 2

0≤ x4 ≤ 3

0≤ x5 ≤ 1

xi ∈ Z ∀i

s

v1 v2

v4v3

t

2,0, ·5,
0,
·

3,1,x1

3,
0,
·

2,3,x3

4,0, ·

1,4
,x 5

3,1,x4

2,2,x2

Figure 4: Left: an integer linear program in which all the variables
are balanced. Right: the corresponding minimum cost network flow
problem. The three symbols of the label on each edge represent
the capacity, the cost, and the corresponding ILP variable, respec-
tively. Under the full flow condition, these problems are equivalent.

Suppose that each column of the matrix A contains one +1, one−1,
and n− 2 zeros. In other words, each variable xi must appear ex-
actly twice in the equality constraints, once with coefficient +1 and
once with coefficient−1. For convenience, we say that a variable is
balanced if it satisfies this requirement. We claim that this ILP can
be reduced to an MCF problem if all the variables are balanced.

We begin by constructing a network graph G = (V,E,c,w,s, t),
in which c : E → R is the capacity of each edge, w : E → R is the
cost of each edge, and s and t are the source and the sink nodes
of the network, respectively. For i ∈ {1,2, . . . ,n}, we add a node
vi to V corresponding to the ith equality constraint Aix = bi; we
also add s and t to V . Then, for each variable xk and for Aik = −1
and A jk =+1, we create an edge ei j from node vi to v j, which will
carry a flow fi j = xk. The capacity of ei j is ci j = ςk and the cost of
ei j is wi j = ωk. Finally, for each constraint Aix = bi, if bi > 0 we
create a zero-cost edge from node vi to sink t with capacity cit = bi,
and if bi < 0 we create a zero-cost edge from source s to node vi
with capacity csi =−bi. Figure 4 shows an example of an ILP and
its equivalent MCF problem.

Solving the ILP in Equation (6) is equivalent to finding the min-
imum cost flow f : E → Z of G under the full flow condition, in
which flows of every outgoing edge from s and every incoming
edge to t are required to reach their full capacity, i.e., fsi = csi and
fit = cit for every node i. After solving the MCF problem, we solve
the ILP by setting each xk equal to the corresponding fi j. These
two problems are equivalent because of the flow conservation con-
dition: for each node, the sum of the flows entering the node is
equal to the sum of the flows leaving it; that is, ∑u fuw = ∑v fwv for
all w ∈V . We have the following observations.

• The objective functions of the ILP and MCF are the same.
• Each equality constraint with bi = 0 in the ILP is equivalent to

the flow conservation condition at the corresponding node in the
MCF network.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

• For each equality constraint with bi > 0 in the ILP, it is equivalent
to the flow conservation condition at the corresponding node if
the edge capacity from the node to t is fully occupied, i.e., fit =
cit . For bi < 0, the equivalence holds if the capacity of the edge
from s is fully occupied, i.e., fsi = csi.

Consider the example in Figure 4. The flow conservation condition
at v1 requires that fs1 + f21 = f13. This is equivalent to the con-
straint x2−x3 =−5 in the ILP when edge (s,v1) is at full capacity:
fs1 = cs1 = 5. Therefore, a flow that satisfies the full flow condi-
tion corresponds to a feasible solution of Equation (6), while the
identical objective functions imply that a solution optimal for one
is optimal for the other.

Let t∗ be a solution obtained from the algorithm of Jakob et
al. that does not respect all the constraints from Section 3.2. We
compute d∗ from t∗. Our first goal is to satisfy the regularity con-
straints (3) with a minimum change to d∗ per objective (5). When
we enforce the constraints, it will cause a change δd= d−d∗ to the
integer offsets. To satisfy the requirement (6) that the variables are
constrained to be nonnegative, we split δde into two nonnegative
variables δde = δd+

e −δd−e . Our aim is to choose δd+
e and δd−e for

all e ∈ E to

minimize ∑
e∈E

δd+
e +δd−e (7)

subject to Ru
uvduv +Ru

vwdvw +Ru
uwdwu = 0 ∀∆uvw ∈ F , (8)

de = d∗e +δd+
e −δd−e ∀e ∈ E,

0≤ δd+
e ≤H+

e ∀e ∈ E,

0≤ δd−e ≤H−e ∀e ∈ E,

δd+
e , δd−e ∈ Z2 ∀e ∈ E,

where H+
uv and H−uv are the maximum allowed modification for d in

the positive direction and the negative direction, respectively. Ini-
tially, we set H+

uv and H−uv so that the duv ∈ [−2,2]2. Then we re-
peatedly increase this limit until the corresponding MCF problem
is feasible. The reason we want to keep |duv|∞ as small as possible
is that if there exists a long edge in the integer offsets, we need to
subdivide it (later on in this section), which creates more vertices.
This ILP has the form of Equation (6) and satisfies most of the pre-
requisites to be cast as an MCF problem, but it does not satisfy the
balance condition.

Balancing Variables. To use the MCF formulation to solve Equa-
tion (7), we need to balance the variables in Equation (8), making
each variable appear twice with opposite signs. For a manifold tri-
angle mesh, each edge adjoins exactly two triangles except for the
edge at the boundary. To make each variable appear exactly twice
in Equation (8), we simply fix δde to be a constant for each e ∈ E
at the boundary.

Some variables may not be balanced initially, but we can bal-
ance them by a simple 2D rotation. Suppose de appears in two
regularity constraints in Equation (8) with coefficients R2(k1) and
R2(k2). We can rotate the second equation by multiplying it by
R2(k1− k2 + 2) so that the second coefficient becomes −R2(k1)
and balances the two signs of de. Figure 5 shows an example con-
taining two triangles, in which the frame of each vertex is marked.

1 2

3

4

!"#$ = (1, 0) = (&#, &$)
!"#' = (1, 1) = (&', &()

!"$' = (0, -1) = (&), &*)
!"$(= (-1, 0) = (&+, &,)

!"'(= (-1, -1) = (&-, &#.)

!"#$ + 0$($)!"$' + 0$($)!"#' = .
!"$(+ 0$(')!"'(+ 0$($)!"$' = .

&# − &) − &' = .
&$ − &* − &(= .
&+ − &#. − &) = .
&, − &- − &* = .

!"#$ + 0$($)!"$' + 0$($)!"#' = .
0$($) (!"$(+ 0$(')!"'(+ 0$($)!"$') = .

&# − &) − &' = .
&$ − &* − &(= .
−&+ + &#. + &) = .
−&, + &- + &* = .

A

B

C

D

E

Figure 5: This example shows why variables may not be bal-
anced. Panel A shows the ten integer variables corresponding to
the five edges of two adjacent triangle elements. Their regularity
constraints are shown on Panel B in the vector form and Panel C
in the scalar form, in which variables x5 and x6 are not balanced.
By rotating the second equation of the right triangle through 180◦

in Panel D, x5 and x6 become balanced as shown in Panel E.

Panel A shows the variables d. We show the regularity constraints,
i.e., Equation (8), in Panel B as the vector form and in Panel C
as the scalar form. The variable d23 (or variables x5 and x6) has
two negative signs and thus is not balanced. By rotating the second
equation 180◦ as Panel D illustrates, we are able to balance d23.

To balance as many variables as possible, we arbitrarily pick
a triangle as the reference (the root of the search tree), and do
a breadth first search (BFS) to visit other triangles. For each pair
of equations corresponding to the two adjacent triangles along the
search tree, we rotate the second equation to balance their shared
variables. For the edges that are not on the BFS search tree, the bal-
anced condition is not guaranteed. We fix those unbalanced vari-
ables as constants so that all mutable variables are balanced.

Feasibility Condition. Fixing unbalanced variables to d∗ as con-
stants may lead to an infeasible ILP problem. One necessary condi-
tion for feasibility is ∑

n
i=1 bi = 0 for b in Equation (6). To prove this,

we add all the equality constraints together ∑
n
i=1 Aix = ∑

n
i=1 bi, and

because each column of A contains one +1, one −1 and n− 2 ze-
ros, the left hand side is equal to zero, so is ∑

n
i=1 bi. From the view

of MCF, this requires the outbound capacity of the source s equal
to the inbound capacity of the sink t.

To guarantee B := ∑
n
i=1 bi = 0, we apply the following greedy

strategy to determine δduv for unbalanced edges and boundary
edges. Initially, we set δduv = 0 for all unbalanced and boundary
edges. Next, we randomly select one of these edges and change it
in the direction to decrease the magnitude of B. This process is re-
peated until B = 0. This strategy is based on the fact that increment-
ing/decrementing a variable for a boundary edge changes B by one,
whereas incrementing/decrementing a variable for an unbalanced
edge changes B by two. Note that B = 0 can always be achieved

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

1 2

34

1 2

34

1 2

34

5 56 75’
𝒅"#

𝒅"$

𝒅"#

Figure 6: Subdivision example. At the left, there are initially three
long edges d13 = (1,2), d14 = (0,2) and d23 = (0,2). We first sub-
divide d13 as d15 = (0,1) and d35 = (−1,−1), as shown in the
middle. Note that the actual location of v5 is at v5′ , but we draw it
at v5 for clarity. Finally, we subdivide d14 and then d23. As a result,
all edges have ‖d‖∞ ≤ 1.

because we can at least let duv = 0 for all unbalanced edges and
boundary edges (u,v) to satisfy it, i.e., setting δduv =−d∗uv.

Now, we show the sufficient condition for the feasibility of the
ILP considering its equivalent MCF problem. Let C− := ∑u csu be
the outbound capacity of the source and C+ := ∑v cvt be the in-
bound capacity of the sink. The following theorem states that with
proper assumption, the full flow condition in the MCF formulation
is always achievable.

Theorem 3.1. Given a network G = (V,E,c,w,s, t), if C+ = C−,
all the internal vertices V\{s, t} are strongly connected (a vertex
va is strongly connected to vb if there exist two paths, one from va
to vb and another from vb to va), and cuv ≥C+ for all (u,v) ∈ E in
which u,v /∈ {s, t}, then the maximum flow f satisfies the full flow
condition.

Proof. We prove it by contradiction. Given a network G =
(V,E,c,w,s, t) where V\{s, t} are strongly connected, we assume f
does not satisfy the full flow condition. Because the edge capacity
is larger than C+, the flow on any internal edge (u,v) is smaller than
the capacity. This means that the connectivity of the residual net-
work of f remains unchanged. Therefore, V\{s, t} is still strongly
connected in the residual network. Also because C+ =C− and the
full flow condition is not satisfied, s and t must be connected to
V\{s, t} in the residual network. So there exists an augmenting path
from s to t, which contradicts with the assumption.

Fortunately, we guarantee the strong connectivity in the MCF
network: Because we use BFS to balance variables, any adjacent
triangles on the search tree share an edge e with balanced de.
Therefore as long as the triangle mesh M is connected, the cor-
responding nodes of the adjacent triangles in the flow networks are
connected. Because BFS reaches all triangles in the mesh, the cor-
responding nodes in the flow networks are strongly connected. In
addition, according to the way we construct the network, we have
C+ =∑bi>0 bi and C−=−∑bi<0 bi. Thus, B= 0 implies C+ =C−.
By using the above theorem, we can guarantee the achievement of a
full flow by computing the maximum flow once we have cuv ≥C+

for all edges (u,v)∈E, or large enough Huv in the ILP (Equation 8).

Summary. To remove position singularities, we first BFS triangles
on the mesh to rotate the corresponding equations to balance vari-

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6 7 8 9

Number of Variables in Different levelsNumber of
Variables

Level

Figure 7: Number of variables at each level of our multi-resolution
structure.

ables. We fix boundary and unbalanced variables, and randomly
modify them to achieve ∑

n
i=1 bi = 0. Then, we build an equivalent

MCF network. We set all edge capacities cuv (or H−uv = H+
uv in the

ILP) so that duv ∈ [−2,2]2 and run an MCF solver. If it returns in-
feasible, we retain the flow value f for each edge and repeatedly
increase the capacity until the problem is feasible.

Multi-Resolution MCF. Under many scenarios, the required den-
sity of the quad mesh is significantly lower than the density of
the input triangle mesh. This means that most of d will finally be
zero. Therefore, we are able to accelerate the MCF algorithm with
a multi-resolution structure.

For each resolution, we build a coarser network by removing ap-
proximately half of zero edges (d∗e = 0) to reduce the number of
variables. Consider a general case where the regularity constraints
are satisfied for two equations corresponding to ∆abc and ∆ae f shar-
ing the edge a. The equation for ∆abc can be written

Rada +Rbdb +Rcdc = 0.

When da = 0, we can replace db by db = −R−1
b Rcdc. Therefore,

we can simplify the set of regularity constraints by a collapse oper-
ation: Remove the variable da and the two constraints for ∆abc and
∆ae f , and replace db and de with −R−1

b Rcdc and −R−1
e R f d f .

To build a hierarchy structure, we scan all the edges with de = 0
at each resolution and collapse them if two corresponding equality
constraints of the zero edge are already satisfied. Once we remove
the variable for one edge, we do not allow the collapse operation on
adjacent edges at the same level. Figure 7 shows the number of vari-
ables for each level with our collapse operation. We first compute
the flow at the lowest resolution, and then propagate the change
of variables to the higher resolution until the full flow condition is
satisfied. We keep the edge capacity be two in the multi-resolution
solver and only increase it if the full flow condition cannot be sat-
isfied in the highest resolution. In practice, we usually can solve
most singularities at the lowest resolution, where the number of
variables is less than one-tenth of the number of variables in the
original (highest) resolution.

In the beginning, we use the network simplex implementation

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

from the LEMON library [DJK11] to solve the MCF at the low-
est resolution. This resolves most of singularities with a minimum
change of d. For further trials with large networks, we approxi-
mate the MCF problem as a maximum flow problem for efficiency.
We use the Boykov–Kolmogorov algorithm [BK04] if the num-
ber of remaining unsatisfied regularity constraints is greater than
10, and use the Edmonds–Karp algorithm [EK72] otherwise. The
maximum flow approximation sacrifices some optimality of Equa-
tion (7), but it greatly improves the efficiency and works well in
practice, as Section 4.4 will demonstrate.

Subdivision on Integer Offsets. After the Multi-Resolution MCF,
‖duv‖∞ might be greater than 1 in order to satisfy the full flow con-
dition. This will complicate the mesh extraction stage later. There-
fore, we subdivide the integer offsets of those long edges by adding
a midpoint and two new edges. Because we require the lengths of
the edges to be integers, the two subdivided edges of duv are com-
puted as duv div 2 and (−duv +duv) div 2. Figure 6 shows an ex-
ample: the long edge d13 = (1,2) is divided into d15 = (0,1) and
d35 = (−1,−1), then d14 and d23 are subdivided.

3.4. Eliminating Inverted Normals

To enforce the consistent orientation constraint in Equation (4), we
employ a two-stage method. First, a greedy algorithm scans the
triangle elements in the mesh and iteratively shrinks the inverted
triangles. After that, we locally model Equations (3) and (4) as a
Boolean satisfiability problem and try to resolve the remaining in-
versions with a SAT solver. Using this strategy, we are able to gen-
erate inversion-free quad mesh for many testing data, but this is
not always guaranteed due to the NP-completeness of the Boolean
satisfiability problem.

Greedy Method. One way to shrink an inverted triangle is to move
one of its vertices to another. To move a vertex from u to v, we
set duv = 0 and modify u’s adjacent edges duw for all (u,w) ∈ E
accordingly to maintain the regularity constraints in Equation (3).
This operation locally changes the adjacent edges, and thus the area
of the adjacent triangles. We scan all the edges of inverted triangles,
and shrink an edge only if it does not produce long edges (‖d∗‖ >
1) and reduces the total inverted area. Our algorithm terminates
until no further movement is feasible. This greedy algorithm can
efficiently remove most of the inverted triangles. We observe that
the remaining inversions are normally located near the orientation
singularities.

Reduction to SAT. To solve the remaining tough inversions, we
model it as a Boolean satisfiability (SAT) problem. An SAT prob-
lem aims at finding an assignment to satisfy a given Boolean
equation. Although the SAT problem has been proven to be NP-
complete, researchers have built efficient SAT solvers based on so-
phisticated heuristics that are able to solve practical problems with
tens of thousands of variables. To turn the constraints in Equa-
tions (3) and (4) to a Boolean equation, we represent each inte-
ger vector variable duv with nine Boolean variables Dx

uv, where
x ∈ S := {−1,0,+1}2 represents the nine possible values of the
integer vector as these values are guaranteed to be in {−1,0,+1}

after the subdivision stage. The relationship between the integer
variable and Boolean variable is

duv = x⇐⇒ Dx
uv = true

for all (u,v) ∈ E and x ∈ S. Then we turn the constraints in Equa-
tions (3) and (4) into Boolean expressions in conjunctive normal
form (CNF). CNF is a list of clauses that need to be satisfied simul-
taneously, and each clause contains a list of variables connected by
OR operators. For each ∆uvw ∈ F , we add the following clauses to
our SAT solver:

¬Dx
uv∨¬Dy

vw∨¬Dz
wu ∀x,y,z ∈ S : x+y+ z 6= 0,

¬Dx
uv∨¬Dy

uw ∀x,y ∈ S : det [x, y]≤ 0.

The first Boolean equation enforces the regularity constraint and
the second Boolean equation enforces the consistent orientation
constraint. The above representation is more for notation It is a little
bit redundant because it needs 9 Boolean variable per integer offset.
We can reduce that to 6 Boolean variables by splitting the dimen-
sion of x for Dx

uv so that Dx
uv =: Dx1

uv∧Dx2
uv, where x = (x1,x2).

In practice, we find that most triangle inversion problems can be
solved locally. That is, it is sufficient to only change the geome-
try of the nearby regions of the inverted triangles. So we iteratively
increase the diameter of the mutable d until the resulting SAT prob-
lem is feasible or the SAT solver times out. In our implementation,
we use the open source SAT solver [LGPC16].

3.5. Updating the Continuous Positions

To make the real-valued variables of the position field consis-
tent with our regularized, inversion-free integer offsets d?, we re-
optimize p by minimizing the sum of squared differences between
the actual and the desired distances,

Ep(p) = ∑
(u,v)∈E

||pv−pu−ρ(Oud?
uv)||22, (9)

where ρ(Oud?
uv) is the desired 3D translation from vertex u to v. As

with the method in Section 3.1, for each vertex u∈V , we restrict pu
to lie on u’s tangent plane. This is a linear least-squares problem,
easily and efficiently solvable.

Our re-optimization can be made to preserve sharp edges in the
triangle mesh. We call an edge in E “sharp” if the angle between the
two adjoining triangles’ normals exceeds a user-specified thresh-
old. If vertices on sharp edges are permitted to move in the tangent
plane, sharp features may be lost, as Figure 8(a) shows. Thus, for a
vertex v ∈ V on a sharp edge, we further constrain pv to move only
along the edge’s affine hull. This constraint is easily incorporated
into the linear least-squares problem. Figure 8(b) shows that this
constraint yields better results.

3.6. Quad Mesh Extraction

Our quad mesh extraction algorithm is simpler than that of Jakob et
al. [JTPSH15]. Because of the subdivision routine described in Sec-
tion 3.3, our position field (specified by p? and d?) does not have
large integer translations (long edges); specifically, |d?|∞ ≤ 1.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

(a) Only tangential constraints (b) With sharp edge constraints

Figure 8: (a) The tangent plane restriction does not suffice to pre-
serve sharp edges. (b) Line constraints preserve sharp features bet-
ter.

(a) Instant Meshes (b) QuadriFlow

Figure 9: (a) Example where a nonmanifold input triangulation
leads to an Instant Mesh with holes. (b) Because QuadriMesh re-
moves inverted triangles from the position field representation, it
produces a manifold mesh with the correct topology.

Moreover, as our position field has no singularities, each non-
degenerate face is a right-angled isosceles triangle with one hy-
potenuse and two legs, and two triangles sharing the hypotenuse
form a quad. Hence our mesh extraction algorithm is straightfor-
ward: first, collapse all zero-length edges (e for which d?

e = 0).
Then for each hypotenuse edge (|d?

e |1 = 2), extract the quad for
its two neighboring triangles. Because we enforce consistent ori-
entation constraints, the quad mesh thus extracted is nearly always
manifold.

By comparison, the mesh extraction method for Instant
Meshes [JTPSH15] must cope with corner cases such as long
edges, inverted triangles, and position field singularities. Figure 9
gives an example for which their implementation has difficulty with
a complex geometry, whereas ours produces the correct topology.

4. Evaluation

Here we evaluate the quality, efficiency, and robustness of our
method. We compare our mesh quality with prior methods; we
thank the creators of those methods for sharing their meshes with
us. We also compare implementations of several methods on 110
challenging car geometries from ShapeNet [CFG∗15, HSG18].

4.1. Mesh Quality

We compare our meshes with meshes generated by several other
state-of-the-art methods. Table 2 lists the names of the models and
properties related to the quality of the quad mesh: angle distortion,

(a) IGM (b) Instant Meshes (c) QuadriFlow

Figure 10: Quadrangulation of the model Fandisk using IGM, In-
stant Meshes, and QuadriFlow (our method). Our mesh has less
angle distortion than IGM, and fewer vertices of irregular valence
than Instant Meshes.

area distortion, and the number of singularities. The best numbers
are in boldface.

Angle Distortion is measured as
√

1
N ∑i(θi−90◦)2, where the

sum is over all the angles in the mesh and N is their number. Our
meshes have less angle distortion than IGM [BCE∗13], and are
comparable with Instant Meshes. As Figure 10 shows, the bottom
of the Fandisk mesh produced by IGM has large distortion, while
ours does not. Instant Meshes usually introduces many unnecessary
singularities, especially for irregular shapes.

Area Distortion is the standard deviation of the areas of the
quadrilateral faces. As reported by Jakob et al., additional position
singularities may alleviate distortion and improve the isotropy of
the quad mesh. Our algorithm achieves comparable isotropy with-
out additional position singularities, as Figure 1 shows.

Table 2 suggests that Mixed-Integer Quadrangulation
(MIQ) [BZK09], Integer-Grid Map (IGM) [BCE∗13], Instant
Meshes [JTPSH15], and our QuadriFlow are the four best methods
to discuss in detail. QuadriFlow meshes have slightly larger distor-
tions than Instant Meshes, which is a reasonable price to pay for
the dramatic reduction in the number of singularities—in practice,
we are able to remove all the singularities from the position field.
For the Buddha and Kitten100K models, QuadriFlow outperforms
all other methods for singularities, but MIQ and IGM produce
fewer singularities for other models.

The cross fields and resolutions of Instant Meshes and Quadri-
Flow meshes are exactly the same. The comparison meshes gen-
erated by other state-of-the-art methods used different cross fields
and mesh resolutions. We subdivide their meshes to our resolution,
followed by a Laplacian smoothing step. QuadriFlow meshes ex-
hibit angle distortion similar to these methods, but it produces less
area distortion, probably due to different cross fields or our MCF
problem being easier to solve than the mixed integer programming
problems. For all the models in Table 2, QuadriFlow is able to gen-
erate an inversion-free integer offset d? after enforcing the consis-
tent orientation constraints.

Figure 11 plots the number of singularities in meshes of the
Knot1 model (illustrated in Figure 12) with respect to the target
number of vertices. The blue bars count the number of orientation
singularities for QuadriFlow, which produces no position singular-

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

Table 2: Comparison of different methods. The best scores appear in boldface. QuadriFlow has slightly larger angle and area distortions
than Instant Meshes, but it is usually better than the global methods MIQ and IGM. In terms of the number of singularities, QuadriFlow is
competitive with these global methods, and it is significantly better than Instant Meshes.

Method Angle Distortion Area Distortion # of Sings Method Angle Distortion Area Distortion # of Sings
David [ACSD∗03] Pig [ACSD∗03]

Alliez et al. 23.6 0.74 10310 Alliez et al. 17.7 0.61 436
Instant Meshes 10.9 0.22 2708 Instant Meshes 8.4 0.19 148

QuadriFlow 14.4 0.26 212 QuadriFlow 10.0 0.18 38
Fandisk [MK06] RockerArm [MK06]

Marinov & Kobbelt 18.0 0.63 59 Marinov & Kobbelt 14.9 0.43 117
Instant Meshes 7.14 0.18 117 Instant Meshes 6.9 0.15 132

QuadriFlow 7.65 0.38 38 QuadriFlow 10.9 0.20 52
Bunny [TPC∗10] Gargoyle [TPC∗10]

Tarini et al. 15.8 0.24 3438 Tarini et al. 17.4 0.23 4283
Instant Meshes 7.2 0.15 351 Instant Meshes 9.85 0.20 659

QuadriFlow 10.4 0.19 56 QuadriFlow 16.5 0.27 218
Omotondo [TPC∗10] Rampant [TPC∗10]

Tarini et al. 17.4 0.24 3903 Tarini et al. 17.4 0.31 3745
Instant Meshes 7.8 0.17 367 Instant Meshes 8.3 0.18 455

QuadriFlow 14.3 0.23 80 QuadriFlow 12.2 0.23 158
Fandisk [BZK09] Fertility [BZK09]

MIQ 8.21 0.39 30 MIQ 8.59 0.26 48
Instant Meshes 7.14 0.20 68 Instant Meshes 7.09 0.15 256

QuadriFlow 7.65 0.22 38 QuadriFlow 7.78 0.16 70
RockerArm [BZK09] Buddha [BCE∗13]

MIQ 5.5 0.30 36 IGM 12.0 0.28 108
Instant Meshes 7.6 0.19 132 Instant Meshes 9.3 0.20 301

QuadriFlow 10.9 0.17 52 QuadriFlow 11.6 0.22 92
Fandisk [BCE∗13] Feline [BCE∗13]

IGM 11.3 0.40 30 IGM 17.7 0.44 110
Instant Meshes 7.14 0.20 117 Instant Meshes 8.11 0.18 592

QuadriFlow 7.65 0.22 38 QuadriFlow 18.0 0.42 158
Hand [BCE∗13] Kitten100K [BCE∗13]

IGM 8.5 0.46 40 IGM 7.84 0.48 63
Instant Meshes 6.46 0.23 43 Instant Meshes 6.87 0.16 127

QuadriFlow 7.4 0.22 42 QuadriFlow 8.43 0.19 32
Bunny [MPZ14] Gargoyle [MPZ14]

Myles et al. 13.5 0.25 30 Myles et al. 10.7 0.33 328
Instant Meshes 7.2 0.15 351 Instant Meshes 9.85 0.20 659

QuadriFlow 10.4 0.19 56 QuadriFlow 16.5 0.27 218
Kitten100K [MPZ14] Pig [MPZ14]

Myles et al. 13.1 0.46 75 Myles et al. 14.0 0.25 55
Instant Meshes 6.87 0.16 127 Instant Meshes 8.4 0.19 148

QuadriFlow 8.43 0.19 32 QuadriFlow 10.0 0.18 38

ities. The orange bars count the number of orientation singularities
for Instant Meshes, and the green bars count the sum of orienta-
tion and position singularities for Instant Meshes. The number of
position singularities in Instant Meshes increases linearly with the
mesh density, which is one of its weaknesses.

Because we use the extrinsic formulations from Instant Meshes,
our mesh edges align with shape features better than IGM’s, as Fig-
ure 12 shows.

We compare Instant Meshes, Integer-Grid Map, and QuadriFlow
in a subclass of ShapeNet with 110 challenging car models that the
implementation of MIQ [BZK09] in libigl cannot handle. As
before, the resolutions and the cross fields of the Instant Meshes

and QuadriFlow meshes remain identical to each other, whereas
we subdivide and smooth the Integer-Grid Map meshes to the same
resolution. We do not have room to list all the models, so Table 3
shows only the percentage of meshes for which QuadriFlow outper-
forms Instant Meshes or IGM according to the specified measure.
Note that there are models for which these two methods cannot pro-
duce reasonable meshes (see Section 4.2); though QuadriFlow can
mesh all the models well, we omit from the comparison models for
which one of the other methods produce conspicuous visual arti-
facts. Table 3 indicates that QuadriFlow meshes exhibit less distor-
tion than IGM, but more than Instant Meshes. For most models, we
attain the minimum number of singularities. Figure 15 illustrates

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Jingwei

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

0

50

100

150

200

250

300

1000 2000 3000 4000 5000 6000

Number of Singularities

Our IM-Orient IM-Total

Number of
singularities

Number of Quad Faces

Figure 11: Number of singularities in meshes of Knot1 as a func-
tion of the target number of vertices. Blue bars count the orien-
tation singularities in QuadriFlow meshes; there are no position
singularities. Orange bars count the orientation singularities in In-
stant Meshes, and green bars count their total orientation and po-
sition singularities.

(a) IGM (b) Instant Meshes (c) QuadriFlow

Figure 12: Surface quadrangulations of the model Knot1 using
Integer-Grid Map (IGM), Instant Meshes, and QuadriFlow. As we
borrow the extrinsic energy formulation from Instant Meshes, our
mesh edges are aligned with shape features, unlike IGM’s.

several of our meshes, with the models kindly supplied by Jakob et
al. or ShapeNet.

4.2. Robustness

To test the robustness of our algorithm, we ran QuadriFlow on
17,791 watertight triangle manifolds generated by Huang, Su, and
Guibas [HSG18] from the ShapeNet repository [CFG∗15], as well

Table 3: Comparisons tabulating the percentage of 110 ShapeNet
car models for which QuadriFlow outperforms Integer-Grid Maps
(IGM) or Instant Meshes based on the angle distortion, the area
distortion, or the number of singularities. We exclude models on
which IGM or Instant Meshes fails to produce a usable mesh.
Instant Meshes have the least distortion, whereas QuadriFlow
meshes have the fewest singularities.

Method Angle Area # of sings
QuadriFlow vs. IGM 59% 100% 97%

QuadriFlow vs. Instant Meshes 9% 5% 100%

0

5

10

15

20

25

0.2M 0.61M 0.86M 1.83M 2.43M

Timing

IM-initialize MCF+Invert Post-Optimization Total

Seconds

Faces

Figure 13: QuadriFlow running times on the Hand model as a
function of the number of faces of the input triangulation. (We sub-
divide the Hand model to the desired number of faces in advance.)
We plot the initial Instant Meshes time, the time to enforce con-
straints, the time for post-processing, and the total time.

as the models provided by Jakob et al. [JTPSH15]. For every model,
QuadriFlow always generates a manifold quadrilateral mesh and
removes all the position singularities, and the chamfer distances
to the original meshes are always less than 5% of the average
edge length in the quad mesh. This validates the robustness of
our algorithm. We are able to preserve the watertightness of ev-
ery model provided by Jakob et al., but not for about 20% of the
ShapeNet models, because the SAT algorithm cannot eliminate ev-
ery inverted triangle. By contrast, MIQ [BZK09] as implemented
in libigl [JP∗17] fails on most of these models.

Recall from Table 3 that we tested Instant Meshes and IGM on
110 watertight car manifolds from ShapeNet. IGM can produce
high-quality meshes for 62 of them. Instant Meshes is able to gen-
erate quad meshes for all of them, but 52 of those contain large
holes. QuadriFlow succeeds on all of them. We provide the models
and meshes in the supplementary material.

4.3. Efficiency

In Figure 13, we chart running times of several stages of Quadri-
Flow as a function of the number of input triangular faces. The in-
put is the Hand model from IGM [BCE∗13], subdivided to obtain
a suitable number of faces. We implemented Instant Meshes using
CUDA with a GTX 1070 GPU, and ran our implementation on a 2.4
GHz CPU with a single thread. Our implementation has speed com-
parable to the fastest existing method [ESCK16], which runs on a
decimated mesh and maps back to the original resolution. They re-
port 5.7 seconds to mesh a model with 0.84 million faces, while di-
rectly processing it with a state-of-the-art global method [ECBK14]
takes 161 seconds. We take only 5 seconds to process 0.86 million
faces, and 20 seconds for 2.43 million faces.

In our experiments, the cost of MIQ [BZK09] as implemented in
libigl varies a lot for different models. It takes over two minutes
to process 14,000 faces, and more than two hours for 100,000 faces
for the Gargoyle model [TPC∗10]. On our 110-car dataset, IGM
takes 50 to 600 seconds to process each model, while our method
meshes each model in at most 10 seconds.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

131 vertices 344 vertices 1486 vertices 3365 vertices
Figure 14: A limitation of our method for coarse mesh generation.
As we approximate an MIP problem as a minimum cost flow prob-
lem, geometric details can be lost when the target mesh density is
low.

4.4. Methodology

Recall that our algorithm introduces an ILP approximation of an
MIP problem, then formulates it as an MCF problem, which is also
approximate because of the need to fix some integer offsets to bal-
ance the variables. Here we evaluate the influence of these approx-
imations on the mesh quality.

ILP Approximation. Instead of jointly optimizing the continuous
energy and integer constraints with MIP, we approximate the MIP
problem with an ILP problem. Because we do not directly optimize
the energy, the ILP solution might not obtain the best energy. This
can cause a loss of geometric details when the mesh is coarse. Fig-
ure 14 shows the QuadriFlow meshes for the Hand model with dif-
ferent choices of mesh density. At the coarsest resolution, Quadri-
Flow loses four fingers.

MCF Approximation. To solve the ILP problem, we further ap-
proximate it as an MCF problem by fixing some integer offsets to
balance the variables. To test how such an approximation affects
the mesh, we experimented on the Hand model with a target reso-
lution of 3,365 vertices. We randomly picked ten different starting
triangles for the BFS algorithm. We find that the percentage of fixed
variables ranges from 0.6% to 0.7%, which is small. The gap be-
tween the worst and the best angle distortion or area distortion is
less than 2% of the median score. Thus we judge the influence of
the MCF approximation to be small and acceptable.

Comparison of Integer Solvers. To justify the effectiveness of
our network flow formulation and our multi-resolution framework,
we performed experiments with different integer optimization al-
gorithms on two test examples. Their running times and distortion
metrics appear in Table 4. We tested five different algorithms. MF is
the Boykov–Kolmogorov algorithm that solves the maximum flow
problem. MF_MR is a multi-resolution version of MF. MCF is the
network simplex algorithm from the LEMON library, which solves
the minimum cost flow problem. MCF_MR is a multi-resolution ver-
sion of MCF, in which we first solve the lowest resolution with the
network simplex algorithm, and then solve the highest resolution
with MF_MR. Lastly, ILP uses Gurobi Optimization [Gur16] to
solve Equation (5) as an integer linear program.

From the table, we see that multi-resolution can greatly shorten
the running times. Furthermore, the network flow algorithms are
far more efficient and stable than the integer linear programming

Table 4: Comparison of multiple methods for integer optimization.
We show the running times, average angle distortions, and average
area distortions on two test examples. The number 900 or 1,500
represents the specified edge density. MF, MCF, MR, and ILP stand
for maximum flow, minimum cost flow, multi-resolution, and integer
linear programming, respectively.

Mesh & Algorithm Time Angle error Area error
Hand_900_MF 0.85 11.195277 0.272820
Hand_900_MF_MR 0.09 12.695140 0.237884
Hand_900_MCF 4.12 12.555485 0.294125
Hand_900_MCF_MR 0.11 13.011465 0.263241
Hand_900_ILP 280.00 12.555485 0.294125
Hand_1500_MF 1.76 9.387929 0.193454
Hand_1500_MF_MR 1.05 10.391423 0.205469
Hand_1500_MCF 13.41 8.786778 0.210081
Hand_1500_MCF_MR 1.09 8.982389 0.220997
Hand_1500_ILP 164.00 8.786778 0.210081

algorithms provided by Gurobi, as the former are more special-
ized whereas ILP is NP-hard. To our surprise, maximum flow al-
gorithms perform nearly as well as minimum cost flow algorithms
as measured by the distortion metrics. Perhaps this is because many
maximum flow algorithms operate by repeatedly finding the short-
est augmenting path, which tends to keep the L1 norm of Expres-
sion (5) small.

5. Conclusion

QuadriFlow solves the global problem of removing position sin-
gularities much more quickly than other global methods. It is not
as fast as Instant Meshes, a purely local method, but it produces
many fewer singularities than Instant Meshes. QuadriFlow is also
quite robust in practice, in the sense that it rarely produces inverted
quads or fails to produce a usable mesh.

As a target for future improvement, observe that our minimum
cost flow problem ignores the geometric properties of the input
mesh. A careful formulation of the cost that takes account of ge-
ometric features might further improve the quality. Our method is
fully automatic, but it could be augmented with user interaction,
supported by applying additional constraints to the MCF problem.
We believe that other classic problems can be reformulated as MCF
problems to make quadrangulation a more powerful tool.

Acknowledgements

This research was funded in part by the NSF grants CCF-1423560,
CCF-1514305, and CRI-1729205, a TUM-IAS Hans Fischer Fel-
lowship, and gifts from Amazon AWS and Autodesk. We thank
Olga Diamanti, who provided insight and expertise that greatly as-
sisted this research.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

Figure 15: More meshes generated by QuadriFlow. We thank Jakob et al. [JTPSH15] and ShapeNet [CFG∗15, HSG18] for providing the
models.

References

[ACSD∗03] ALLIEZ P., COHEN-STEINER D., DEVILLERS O., LÉVY
B., DESBRUN M.: Anisotropic polygonal remeshing. In ACM Transac-
tions on Graphics (TOG) (2003), vol. 22, ACM, pp. 485–493. 3, 10

[BCE∗13] BOMMES D., CAMPEN M., EBKE H.-C., ALLIEZ P.,
KOBBELT L.: Integer-grid maps for reliable quad meshing. ACM Trans-
actions on Graphics (TOG) 32, 4 (2013), 98. 1, 3, 5, 9, 10, 11

[BK04] BOYKOV Y., KOLMOGOROV V.: An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence 26, 9 (2004),
1124–1137. 8

[BLP∗13] BOMMES D., LÉVY B., PIETRONI N., PUPPO E., SILVA C.,
TARINI M., ZORIN D.: Quad-mesh generation and processing: A sur-
vey. In Computer Graphics Forum (2013), vol. 32, Wiley Online Library,
pp. 51–76. 2

[BZK09] BOMMES D., ZIMMER H., KOBBELT L.: Mixed-integer quad-

rangulation. In ACM Transactions On Graphics (TOG) (2009), vol. 28,
ACM, p. 77. 1, 2, 3, 9, 10, 11

[CBK15] CAMPEN M., BOMMES D., KOBBELT L.: Quantized global
parametrization. ACM Transactions on Graphics 34, 6 (Oct. 2015),
192:1–192:12. 3

[CDS10] CRANE K., DESBRUN M., SCHRÖDER P.: Trivial connections
on discrete surfaces. In Computer Graphics Forum (2010), vol. 29, Wiley
Online Library, pp. 1525–1533. 3

[CFG∗15] CHANG A. X., FUNKHOUSER T., GUIBAS L., HANRAHAN
P., HUANG Q., LI Z., SAVARESE S., SAVVA M., SONG S., SU H.,
XIAO J., YI L., YU F.: ShapeNet: An information-rich 3D model repos-
itory. arXiv preprint arXiv:1512.03012 (2015). 2, 9, 11, 13

[CLW16] CHIEN E., LEVI Z., WEBER O.: Bounded distortion
parametrization in the space of metrics. ACM Transactions on Graphics
(TOG) 35, 6 (2016), 215. 3

[CP05] CAZALS F., POUGET M.: Estimating differential quantities using

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

Huang, Zhou, Niessner, Shewchuk, and Guibas / QuadriFlow

polynomial fitting of osculating jets. Computer Aided Geometric Design
22, 2 (2005), 121–146. 2

[CSM03] COHEN-STEINER D., MORVAN J.-M.: Restricted Delaunay
triangulations and normal cycle. In Proceedings of the Nineteenth An-
nual Symposium on Computational Geometry (2003), ACM, pp. 312–
321. 2

[DBG∗06] DONG S., BREMER P.-T., GARLAND M., PASCUCCI V.,
HART J. C.: Spectral surface quadrangulation. In ACM Transactions
on Graphics (TOG) (2006), vol. 25, ACM, pp. 1057–1066. 2

[DJK11] DEZSŐ B., JÜTTNER A., KOVÁCS P.: LEMON—an open
source C++ graph template library. Electronic Notes in Theoretical Com-
puter Science 264, 5 (2011), 23–45. 8

[DVPSH14] DIAMANTI O., VAXMAN A., PANOZZO D., SORKINE-
HORNUNG O.: Designing n-PolyVector fields with complex polynomi-
als. In Computer Graphics Forum (2014), vol. 33, Wiley Online Library,
pp. 1–11. 3

[DVPSH15] DIAMANTI O., VAXMAN A., PANOZZO D., SORKINE-
HORNUNG O.: Integrable PolyVector fields. ACM Transactions on
Graphics (TOG) 34, 4 (2015), 38. 3

[EBCK13] EBKE H.-C., BOMMES D., CAMPEN M., KOBBELT L.:
QEx: Robust quad mesh extraction. ACM Transactions on Graphics
(TOG) 32, 6 (2013), 168. 3

[ECBK14] EBKE H.-C., CAMPEN M., BOMMES D., KOBBELT L.:
Level-of-detail quad meshing. ACM Transactions on Graphics (TOG)
33, 6 (2014), 184. 11

[EK72] EDMONDS J., KARP R. M.: Theoretical improvements in algo-
rithmic efficiency for network flow problems. Journal of the ACM 19, 2
(1972), 248–264. 8

[ESCK16] EBKE H.-C., SCHMIDT P., CAMPEN M., KOBBELT L.: In-
teractively controlled quad remeshing of high resolution 3D models.
ACM Transactions on Graphics (TOG) 35, 6 (2016), 218. 2, 11

[GLLR11] GURUNG T., LANEY D., LINDSTROM P., ROSSIGNAC J.:
SQuad: Compact representation for triangle meshes. In Computer
Graphics Forum (2011), vol. 30, Wiley Online Library, pp. 355–364.
2

[Gur16] GUROBI OPTIMIZATION, INC.: Gurobi optimizer reference
manual, 2016. URL: http://www.gurobi.com. 12

[HSG18] HUANG J., SU H., GUIBAS L.: Robust watertight mani-
fold surface generation method for ShapeNet models. arXiv preprint
arXiv:1802.01698 (2018). 9, 11, 13

[HZ00] HERTZMANN A., ZORIN D.: Illustrating smooth surfaces. In
Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques (2000), ACM Press/Addison-Wesley Publishing
Co., pp. 517–526. 2

[JFH∗15] JIANG T., FANG X., HUANG J., BAO H., TONG Y., DES-
BRUN M.: Frame field generation through metric customization. ACM
Transactions on Graphics (TOG) 34, 4 (2015), 40. 3

[JP∗17] JACOBSON A., PANOZZO D., ET AL.: libigl: A simple C++
geometry processing library, 2017. http://libigl.github.io/libigl/. 11

[JTPSH15] JAKOB W., TARINI M., PANOZZO D., SORKINE-HORNUNG
O.: Instant field-aligned meshes. ACM Transactions on Graphics 34, 6
(Oct. 2015), 189:1–189:15. 1, 2, 3, 4, 5, 8, 9, 11, 13

[KCPS13] KNÖPPEL F., CRANE K., PINKALL U., SCHRÖDER P.: Glob-
ally optimal direction fields. ACM Transactions on Graphics (TOG) 32,
4 (2013), 59. 3

[Kle67] KLEIN M.: A primal method for minimal cost flows with ap-
plications to the assignment and transportation problems. Management
Science 14, 3 (1967), 205–220. 2

[KNP07] KÄLBERER F., NIESER M., POLTHIER K.: Quadcover-surface
parameterization using branched coverings. In Computer Graphics Fo-
rum (2007), vol. 26, Wiley Online Library, pp. 375–384. 1

[Knu95] KNUPP P.: Mesh generation using vector fields. Journal of
Computational Physics 119, 1 (1995), 142–148. 1

[LGPC16] LIANG J. H., GANESH V., POUPART P., CZARNECKI K.:
Learning rate based branching heuristic for SAT solvers. In Interna-
tional Conference on Theory and Applications of Satisfiability Testing
(2016), Springer, pp. 123–140. 8

[LHJ∗14] LING R., HUANG J., JÜTTLER B., SUN F., BAO H., WANG
W.: Spectral quadrangulation with feature curve alignment and element
size control. ACM Transactions on Graphics (TOG) 34, 1 (2014), 11. 2

[LJX∗10] LAI Y.-K., JIN M., XIE X., HE Y., PALACIOS J., ZHANG
E., HU S.-M., GU X.: Metric-driven RoSy field design and remesh-
ing. IEEE Transactions on Visualization and Computer Graphics 16, 1
(2010), 95–108. 2

[LKH08] LAI Y.-K., KOBBELT L., HU S.-M.: An incremental approach
to feature aligned quad dominant remeshing. In Proceedings of the
2008 ACM Symposium on Solid and Physical Modeling (2008), ACM,
pp. 137–145. 3

[LZ14] LEVI Z., ZORIN D.: Strict minimizers for geometric optimiza-
tion. ACM Transactions on Graphics (TOG) 33, 6 (2014), 185. 3

[MK06] MARINOV M., KOBBELT L.: A robust two-step procedure
for quad-dominant remeshing. In Computer Graphics Forum (2006),
vol. 25, Wiley Online Library, pp. 537–546. 10

[MPZ14] MYLES A., PIETRONI N., ZORIN D.: Robust field-aligned
global parametrization. ACM Transactions on Graphics (TOG) 33, 4
(2014), 135. 3, 10

[MZ13] MYLES A., ZORIN D.: Controlled-distortion constrained global
parametrization. ACM Transactions on Graphics (TOG) 32, 4 (2013),
105. 3

[Orl97] ORLIN J. B.: A polynomial time primal network simplex algo-
rithm for minimum cost flows. Mathematical Programming 78, 2 (1997),
109–129. 5

[OSCS99] OWEN S. J., STATEN M. L., CANANN S. A., SAIGAL S.:
Q-Morph: An indirect approach to advancing front quad meshing. In-
ternational Journal for Numerical Methods in Engineering 44, 9 (1999),
1317–1340. 2

[RLL∗06] RAY N., LI W. C., LÉVY B., SHEFFER A., ALLIEZ P.: Pe-
riodic global parameterization. ACM Transactions on Graphics (TOG)
25, 4 (2006), 1460–1485. 1

[RLS∗12] REMACLE J.-F., LAMBRECHTS J., SENY B., MARCHAN-
DISE E., JOHNEN A., GEUZAINET C.: Blossom-Quad: A non-uniform
quadrilateral mesh generator using a minimum-cost perfect-matching al-
gorithm. International Journal for Numerical Methods in Engineering
89, 9 (2012), 1102–1119. 2

[RVAL09] RAY N., VALLET B., ALONSO L., LEVY B.: Geometry-
aware direction field processing. ACM Transactions on Graphics (TOG)
29, 1 (2009), 1. 2, 3

[RVLL08] RAY N., VALLET B., LI W. C., LÉVY B.: n-symmetry direc-
tion field design. ACM Transactions on Graphics (TOG) 27, 2 (2008),
10. 2, 3

[TPC∗10] TARINI M., PIETRONI N., CIGNONI P., PANOZZO D., PUPPO
E.: Practical quad mesh simplification. In Computer Graphics Forum
(2010), vol. 29, Wiley Online Library, pp. 407–418. 10, 11

[VZ01] VELHO L., ZORIN D.: 4–8 subdivision. Computer Aided Geo-
metric Design 18, 5 (2001), 397–427. 2

[ZHLB10] ZHANG M., HUANG J., LIU X., BAO H.: A wave-based
anisotropic quadrangulation method. ACM Transactions on Graphics
(TOG) 29, 4 (2010), 118. 2

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://www.gurobi.com

